首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We provide new proofs to modified equivalent conditions for stability independent of delay of retarded and neutral delay differential systems. We also present a new test procedure for stability independent of delay. If the system is not stable independent of delay, the test is further applicable to obtain the intervals of delay for which the system is asymptotically stable. The usefulness and simplicity of the new test procedure is illustrated by numerical examples.  相似文献   

2.
This paper deals with the experimental aspects of ultrasonic delay lines in liquid media and is a sequel to a previous paper treating the general theory of such devices.Delay devices employing ultrasonic propagation through liquids have proved satisfactory for delay times of the order of 3 milliseconds or less. Such devices can be made broadband and give excellent reproduction of pulse shape. The design considerations for such devices are discussed and illustrated by actual examples.  相似文献   

3.
This paper investigates the exponential stability problem for uncertain time-varying delay systems. Based on the Lyapunov-Krasovskii functional method, delay-dependent stability criteria have been derived in terms of a matrix inequality (LMI) which can be easily solved using efficient convex optimization algorithms. These results are shown to be less conservative than those reported in the literature. Four numerical examples are proposed to illustrate the effectiveness of our results.  相似文献   

4.
This paper focuses on the fault detection problem for a class of discrete-time delay Markovian jump systems with delay term modes partially available. A crucial but general hypothesis considered here is there is a suitable and effective detector to provide a measurement signal of operation mode of delay term. The fault detection filter used as the residual generator could depend on the original system operation mode or the signal emitted from detector. Via minimizing the error between the residual and fault signal, the problem of fault detection and isolation (FDI) is converted into an H filtering problem and closely related to a probability representing the degree of dependence between the original and measurable signals. An improved Lyapunov function depending on such two operation modes is exploited to study the corresponding problems. Sufficient conditions for the existence of the desired FDI filter are presented in terms of LMIs. When such a probability is uncertain or partially unknown, similar problems are also considered. A practical example is used to demonstrate the effectiveness and superiority of the proposed methods.  相似文献   

5.
This paper investigates the problem of HH filtering for Markovian jump linear systems with time-varying delay. The aim of this problem is to design an HH filter that ensures stochastic stability of the filtering error system and a prescribed L2-induced gain from the noise signals to the estimation error, for all admissible uncertainties. For solving the problem, we transform the system under consideration into an interconnection system. Based on the system transformation and the stochastic scaled small gain theorem, stochastic stability of the original system is examined via the stochastic stability version of the bounded realness of the transformed forward system. The merit of the proposed approach lies in its reduced conservatism, which is made possible by a precise approximation of the time-varying delay and the stochastic scaled small gain theorem. The proposed HH filtering condition is demonstrated to be less conservative than most existing results. Moreover, the HH filter design condition is further presented via convex optimizations, whose effectiveness are also illustrated via numerical examples.  相似文献   

6.
This study scrutinizes the stability problem of linear time-invariant feedback control systems with a constant-coefficient, partial delay distribution from a new perspective, which is built on an equivalence between the system of interest and the one with two lumped delays. We aim to determine all the potential stability changing curves (PSCC) of the system in the domain of delays in order to make a non-conservative stability assessment. First, we propose the Dixon resultant-based frequency sweeping procedure to calculate the so-called kernel and offspring hypersurfaces (KOH) of the system. The superiority in the computational efficiency of this Dixon-type method is revealed by comparison with the Sylvester-type one. Second, we specifically tackle the standing root case for the singularity at the zero root, leading to what we call the standing root boundary (SRB). Then, we claim that the union of the KOH and SRB constitutes the PSCC of the system. With these, the stability map of the system is then created using the Cluster Treatment of Characteristic Roots paradigm. Furthermore, we declare the delay robustness is enhanced by the proposed control law. Finally, we demonstrate the effectiveness of the presented procedures over two example case studies by the Quasi-Polynomial mapping-based Root-finder routine as well as the Simulink-based simulation.  相似文献   

7.
亓刚  朱敏 《大众科技》2014,(7):85-88
随着CMOS技术的持续发展,数字测试系统或自动测试装置的定时边沿、数据率、集成度等要求也随之增加。延时技术的重要性越发明显,对其要求也越来越高,精密延时电路的设计成为了一项必不可少同时也非常重要的一个技术。文章综述了延时电路的进展和研究。  相似文献   

8.
The H control problem is investigated in this paper for a class of networked control systems (NCS) with time-varying delay and packet disordering. A new model is proposed to describe the packet disordering phenomenon and then converted into a parameter-uncertain system with multi-step delay. Based on the obtained system model, a sufficient condition for robust stability of the NCS is derived. Furthermore, an optimization problem with linear matrix inequalities (LMIs) constraints is formulated to design the state feedback H controller such that the closed-loop NCS is robust stable and has an optimal H disturbance attenuation level. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed method.  相似文献   

9.
10.
11.
This paper presents a new necessary and sufficient condition for testing the strong delay-independent stability of linear systems subject to a single delay. The proposed method follows from the use of matrix polynomials constraints and the Kalman–Yakubovich–Popov lemma. The resulting condition can be checked exactly by solving a feasibility problem in terms of a linear matrix inequality (LMI). Simple numerical examples are given to show the effectiveness of the proposed method.  相似文献   

12.
Passivity-based boundary control is considered for time-varying delay reaction-diffusion systems (DRDSs) with boundary input-output. By virtue of Lyapunov functional method and inequality techniques, sufficient conditions are obtained for input strict passivity and output strict passivity of DRDSs, respectively. When the parameter uncertainties appear in DRDSs, sufficient conditions are presented to guarantee the robust passivity. Moreover, we apply our theoretical results to the synchronization problem of coupled delay reaction-diffusion systems and get the criterion to ensure the asymptotic synchronization. Finally, numerical simulations are provided to show the validity of our theoretical results.  相似文献   

13.
In this paper, the class of linear generalized neutral differential delay systems with time-invariant coefficients is studied. These kinds of systems are inherent in many physical and engineering phenomena. Using the matrix pencil theory, we decompose it into five subsystems, whose solutions are obtained. Moreover, the form of the initial function is given, so the corresponding initial value problem is uniquely solvable.  相似文献   

14.
In this paper, the problem of HH filtering of uncertain time-delay systems with Markovian jumping parameters is considered. Firstly, by utilizing the delay-partitioning idea, an augmented mode-dependent Lyapunov functional is employed to analyze the stochastic stability and HH performance of the resulting filtering error systems. It is noted that the derived performance analysis results are less conservative than the recent ones in the literature. Secondly, based on the criteria obtained, a desired filter can be constructed by introducing a given nonsingular matrix and a scalar. Numerical examples are given to illustrate the effectiveness of the proposed approach.  相似文献   

15.
拉普拉斯变换有很多性质,本篇文章主要介绍延迟性质以及与其相关的应用。  相似文献   

16.
《Journal of The Franklin Institute》2022,359(18):10355-10391
In this paper, an adaptive neural finite-time tracking control is studied for a category of stochastic nonlinearly parameterized systems with multiple unknown control directions, time-varying input delay, and time-varying state delay. To this end, a novel criterion of semi-globally finite-time stability in probability (SGFSP) is proposed, in the sense of Lyapunov, for stochastic nonlinear systems with multiple unknown control directions. Secondly, a novel auxiliary system with finite-time convergence is presented to cope with the time-varying input delay, the appropriate Lyapunov Krasovskii functionals are utilized to compensate for the time-varying state delay, Nussbaum functions are exploited to identify multiple unknown control directions, and the neural networks (NNs) are applied to approximate the unknown functions of nonlinear parameters. Thirdly, the fraction dynamic surface control (FDSC) technique is embedded in the process of designing the controller, which not only the “explosion of complexity” problems are successfully avoided in traditional backstepping methods but also the command filter convergence can be obtained within a finite time to lead greatly improved for the response speed of command filter. Meanwhile, the error compensation mechanism is established to eliminate the errors of the command filter. Then, based on the proposed novel criterion, all closed-loop signals of the considered systems are SGPFS under the designed controller, and the tracking error can drive to a small neighborhood of the origin in a finite time. In the end, three simulation examples are applied to demonstrate the validity of the control method.  相似文献   

17.
This paper studies uniqueness and stability of the equilibrium points of nonlinear time-delay systems with leakage delay by using the appropriate model transformation that shifts the considered systems into the neutral-type time-delay systems. Delay-independent sufficient conditions for uniqueness and delay-dependent sufficient conditions for stability are derived, respectively, by using contraction mapping theorem and suitable degenerate Lyapuniv-Krasvovskii functional together with some differential inequalities and LMI technique.  相似文献   

18.
Global dissipativity of stochastic neural networks with time delay   总被引:1,自引:0,他引:1  
Liao and Wang [Global dissipativity of continuous-time recurrent neural networks with time delay, Phys. Rev. E 68 (2003) 016118] firstly studied the dissipativity of neural networks. In this paper, the neural network model is generalized to a stochastic case, and the global dissipativity in mean of such stochastic system is investigated. By constructing several proper Lyapunov functionals combining with Jensen's inequality, Itô's formula and some analytic techniques, several sufficient conditions for the global dissipativity in mean of such stochastic neural networks are derived in LMIs forms, which can be easily verified in practice. Three numerical examples are provided to demonstrate the effectiveness of our criteria.  相似文献   

19.
This paper focuses on the problem of advancing a theorem to estimate the stability bound of delay decay rate α and upper bound delay time τ to guarantee the stability of time-delay systems. Based on the Lyapunov–Krasovskii functional techniques and linear matrix inequality tools, exponential stability and decaying rate for linear time-delay systems are also derived. These results are shown to be less conservative than those reported in the literature. Examples are included to illustrate our results.  相似文献   

20.
In this paper, the fixed-time stabilization control problem for general linear systems with input delay is addressed. In addition to the Artstein–Kwon–Pearson reduction transformation, a pre-compensation control structure is established first to convert the original system into a single input delay-free linear system. Then, we show that the origin of the transformed system is fixed-time stabilizable by an additional homogeneous control design if the original system is controllable. Finally, an example is used to validate the proposed method via simulation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号