首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
This paper presents an intelligent controller for underwater vehicle-manipulator systems (UVMS) based on the neuro-fuzzy approach. The controller is composed of fuzzy PD control with membership function tuning by linguistic hedge. A neural network compensator approximates the dynamics of the UVMS in decentralized form. The new controller has the advantages of simplicity of implementation due to decentralized design, precision, and robustness to payload variations and hydrodynamic disturbances. It has significantly low energy consumption compared to both the conventional PD and conventional fuzzy control methods. The effectiveness of the proposed controller is illustrated by results of simulations for a six degrees of freedom autonomous underwater vehicle with a three degrees of freedom on-board manipulator.  相似文献   

2.
In this paper, an adaptive Takagi–Sugeno (T–S) fuzzy controller based on reinforcement learning for controlling the nonlinear dynamical systems is proposed. The parameters of the T–S fuzzy system are learned using the reinforcement learning based on the actor-critic method. This on-line learning algorithm improves the controller performance over the time, which it learns from its own faults through the reinforcement signal from the external environment and tries to reinforce the T–S fuzzy system parameters to converge. The updating parameters are developed using the Lyapunov stability criterion. The proposed controller is faster in learning than the T–S fuzzy that parameters learned using the gradient descent method under the same conditions. Moreover, it is able to handle the load changes and the system uncertainties. The test is carried out based on two mathematical models. In addition, the proposed controller is applied practically for controlling a direct current (DC) shunt machine. The results indicate that the response of the proposed controller has a good performance compared with other controllers.  相似文献   

3.
基于模糊控制的卫星大角度姿态机动控制方法研究   总被引:1,自引:0,他引:1  
本文设计了一个典型Mamdani类PD型模糊控制器来研究卫星大角度姿态机动控制问题。卫星姿态机动控制要求控制系统响应快、具有较强鲁棒性。模糊控制器的设计十分灵活,在控制性能方面有自己突出的特点。通过仿真,考察了模糊控制器的隶属函数在各种参数下的不同控制性能,与一个传统I/O解耦PID控制器的控制效果进行比较,并验证了模糊控制器的鲁棒性。仿真结果证实模糊控制用于姿态机动控制有良好的效果。  相似文献   

4.
Auto-structuring fuzzy neural system for intelligent control   总被引:1,自引:0,他引:1  
An auto-structuring fuzzy neural network-based control system (ASFNS), which includes the auto-structuring fuzzy neural network (ASFNN) controller and the supervisory controller, is proposed in this paper. The ASFNN is used as the main controller to approximate the ideal controller and the supervisory controller is incorporated with the ASFNN for coping with the chattering phenomenon of the traditional sliding-mode control. In the ASFNS, an automatic structure learning mechanism is proposed for network structure optimization, where two criteria of node-adding and node-pruning are introduced. It enables the ASFNN to determine the nodes autonomously while ensures the control performance. In the ASFNS, all the parameters are evolved by the means of the Lyapunov theorem and back-propagation to ensure the system stability. Thus, an intelligent control approach for adaptive control is presented, where the structure and parameter can be evolved simultaneously. The proposed ASFNS features the following salient properties: (1) on-line and model-free control, (2) relax design in controller structure, (3) overall system stability. To investigate the capabilities, the ASFNS is applied to a kind of nonlinear system control. Through the simulation results the advantages of the proposed ASFNS can be validated.  相似文献   

5.
Rotary kiln is the central and the most complex component of cement production process. It is used to convert calcineous raw meal into cement clinkers, which plays a key role in quality and quantity of the final produced cement. This system has complex nonlinear dynamic equations that have not been completely worked out yet. In conventional modeling procedure, a large number of the involved parameters are crossed out and an approximation model is presented instead. Therefore, the performance of the obtained model is very important and an inaccurate model may cause many problems for designing a controller. This study presents hierarchical wavelet TS-type fuzzy inference system (HWFIS) for identification of cement rotary kiln. In the proposed method, wavelet fuzzy inference system (WFIS) with two input variables is used as sub-model in a hierarchical structure and gradient descent (GD) algorithm is chosen for training parameters of antecedent and conclusion parts of sub-models. The results show that the proposed method has higher performance in comparison with the other models. The data collected from Saveh White Cement Company is used in our simulations.  相似文献   

6.
In the present study, a novel technique is suggested for the adaptive non-linear model predictive control based on the fuzzy approach in three stages. In the presented approach, in the first stage, the prediction and control horizons are obtained from a fuzzy system in each control step. Another fuzzy system is employed to determine the weight factors before the optimization stage of developing new controller. The proposed controller gives the parameters of the model predictive control (MPC) in each control step in order to improve the performance of nonlinear systems. The proposed control scheme is compared with the traditional MPC and Generic Model Control for controlling MED-TVC process. The performances of the three proposed controllers have been investigated in the absence and presence of disturbance in order to evaluate the stability and robustness of the proposed controllers. The results reveal that the novel adaptive controller based on fuzzy approach performs better than the two other controllers in set-point tracking and disturbance rejection with lower IAE criteria. In addition, the average computational time for the adaptive MPC exhibits a decline of 34% in comparison with the traditional MPC.  相似文献   

7.
挖掘机液压系统控制系统是一个大滞后、非线性系统,难于建立精确的数学模型,应用常规PID控制不能达到理想的控制效果。模糊PID控制是智能控制技术的一类,是解决复杂非线性对象控制问题的一个有效途径。所以,在液压控制系统中采用模糊PID控制器,使系统有较好的鲁棒性、控制精度及动态性能。模糊控制器采用8751单片机的软硬件实现,运行结果证明了这种控制方案的可行性。  相似文献   

8.
This paper is concerned with the problem of adaptive event-triggered (AET) based optimal fuzzy controller design for nonlinear networked control systems (NCSs) characterized by Takagi–Sugeno (T–S) fuzzy models. An improved AET communication scheme with a memory adaptive rule is proposed to enhance the utilization of the state response vertex data. Different from the existing ET based results, the improved AET scheme can save more communication resources and acquire better system performance. The sufficient criteria of performance analysis and controller design are presented for the closed-loop control system subject to mismatched membership functions (MFs) and AET scheme. And then, a new MFs online learning algorithm on the basis of the gradient descent approach is employed to optimize the MFs of fuzzy controller and obtain optimal fuzzy controller for further improving system performance. Finally, two simulation examples are presented to verify the advantage and effectiveness of the provided controller design technique.  相似文献   

9.
林东姝  王宇  葛立良 《科技通报》2012,28(4):185-186
太阳帆板驱动机构轴承跑合是空间轴承应用前必不可少的重要预处理环节。本文提出了模糊PID控制算法,在常规PID调节器的基础上运用模糊推理思想。仿真结果表明,系统具有较好的动静态性能,满足系统的要求。  相似文献   

10.
Previously proposed adaptive fuzzy sliding mode control (AFSMC) and adaptive fuzzy sliding mode observer (AFSMO) methods are mixed and extended for the case of affine systems in which the input gain matrix is state-dependent, non-diagonal and non-positive definite. The proposed Extended AFSMCO (E-AFSMCO) method is then applied for position control of a Stewart Manipulator (SM), whose parameters are strongly state-dependent and complex and not suitable for practical control purposes. A robust observer-based control method which can work with a simplified model of the plant, and at the same time can preserve the stability and performance of the overall complex system is of great need. In this study, the SM dynamic model is simplified by removing the dynamic effects of the legs and the neglected terms are considered as un-modeled dynamics, for which the upper bound of the uncertainty is progressively estimated using the proposed adaptation rules. The final controller is comprised of a fuzzy controller in parallel with a robust switching controller. The second Lyapunov theorem is used to prove the closed-loop asymptotic stability. The proposed E-AFSMCO method is verified numerically and experimentally, depicting the effectiveness of the method for real-time industrial applications.  相似文献   

11.
The interconnected large-scale power systems are liable to performance degradation under the presence of sudden small load demands, parameter ambiguity and structural changes. Due to this, to supply reliable electric power with good quality, robust and intelligent control strategies are extremely requisite in automatic generation control (AGC) of power systems. Hence, this paper presents an output scaling factor (SF) based fuzzy classical controller to enrich AGC conduct of two-area electrical power systems. An implementation of imperialist competitive algorithm (ICA) is made to optimize the output SF of fuzzy proportional integral (FPI) controller employing integral of squared error criterion. Initially the study is conducted on a well accepted two-area non-reheat thermal system with and without considering the appropriate generation rate constraint (GRC). The advantage of the proposed controller is illustrated by comparing the results with fuzzy controller and bacterial foraging optimization algorithm (BFOA)/genetic algorithm (GA)/particle swarm optimization (PSO)/hybrid BFOA-PSO algorithm/firefly algorithm (FA)/hybrid FA-pattern search (hFA-PS) optimized PI/PID controller prevalent in the literature. The proposed approach is further extended to a newly emerged two-area reheat thermal-PV system. The superiority of the method is depicted by contrasting the results of GA/FA tuned PI controller. The proposed control approach is also implemented on a multi-unit multi-source hydrothermal power system and its advantage is established by Correlating its results with GA/hFA-PS tuned PI, hFA-PS/grey wolf optimization (GWO) tuned PID and BFOA tuned FPI controllers. Finally, a sensitivity analysis is performed to demonstrate the robustness of the proposed method to broad changes in the system parameters and size and/or location of step load perturbation.  相似文献   

12.
An adaptive fuzzy cerebellar model articulation controller-based (CMAC) nonlinear control with the advantage of architecture learning is proposed. To cope with the tradeoff between the complexity of CMAC architecture and the quality of system convergence, a dynamic architecture learning scheme is introduced, where the associative memory reinforcement and the associative memory reorganization are involved. In the memory reinforcement process, new associative memories will be generated when the memory cells in the current architecture are found insufficient. On the other hand, the inefficient memories will be detected and reorganized in the memory reorganization process. With the proposed approach, the task of fuzzy CMAC architecture determination by preliminary knowledge or trials can be freed when a well-organized and well-parameterized CMAC is represented to achieve desired approximation performance. Thus, with the proposed CMAC, a dynamic control approach is presented. In this paper, according to the adaptive control theory, the fuzzy CMAC (FCMAC) is utilized as the main controller to mimic the ideal computation controller and a supervisory controller is designed to compensate the approximation error. In the FCMAC, all the controller parameters are online tuned based on the Lyapunov stability theorem such that the stability of closed-loop system can be guaranteed. Simulation results and comparisons are presented for verification.  相似文献   

13.
In this paper, the problem of adaptive fuzzy fault-tolerant control is investigated for a class of switched uncertain pure-feedback nonlinear systems under arbitrary switching. The considered actuator failures are modeled as both lock-in-place and loss of effectiveness. By utilizing mean value theorem, the considered pure-feedback systems are transformed into a class of switched nonlinear strict-feedback systems. Under the framework of backstepping design technique and common Lyapunov function (CLF), an adaptive fuzzy fault-tolerant control (FTC) method with predefined performance bounds is developed. It is proved that under the proposed controller, all the signals of the close-loop systems are bounded and the state tracking error for each step remains within the prescribed performance bound (PPB) regardless of actuator faults and the system switchings. In addition, the tracking errors and magnitudes of control inputs can be reduced by adjusting the PPB parameters of errors in the first and last steps. The simulation results are provided to show the effectiveness of the proposed control scheme.  相似文献   

14.
This paper addresses the adaptive fuzzy event-triggered control (ETC) problem for a class of nonlinear uncertain systems with unknown nonlinear functions. A novel ETC approach that exhibits a combinational triggering (CT) behavior is proposed to update the controller and fuzzy weight vectors, achieving the non-periodic control input signals for nonlinear systems. A CT-based fuzzy adaptive observer is firstly constructed to estimate the unmeasurable states. Based on this, an output feedback ETC is proposed following the backstepping and error transformation methods, which ensures the prescribed dynamic tracking (PDT) performance. The PDT performance indicates that the transient bounds, over-shooting and ultimate values of tracking errors are fully determined by the control parameters and functions chosen by users. The closed-loop stability is guaranteed under the framework of impulsive dynamic system. Besides, the Zeno phenomenon is circumvented. The theoretical analysis indicates that the proposed scheme guarantees control performance while considerably reducing the communication resource utilization and controller updating frequency. Finally, the numerical simulations are conducted to verify the theoretical findings.  相似文献   

15.
In this study, the problem of observer-based control for a class of nonlinear systems using Takagi-Sugeno (T-S) fuzzy models is investigated. The observer-based model predictive event-triggered fuzzy reset controller is constructed by a T-S fuzzy state observer, an event-triggered fuzzy reset controller, and a model predictive mechanism. First, the proposed controller utilizes the T-S fuzzy model and is constructed based on state observations and discrete sampling output, which can greatly reduce the occupation of communication resources. Then, the model predictive strategy for reset law design is designed in this paper. With a reasonable reset of the controller state at certain instants, the performance of the reset control systems is improved. Finally, the validity of the proposed method is illustrated by simulation. The merits of the proposed controller in improving transient performance and reducing the communication occupation are demonstrated by comparing its results with the output feedback fuzzy controller and the first-order fuzzy reset controller.  相似文献   

16.
Robots are commonly used to perform repetitive or dangerous tasks, and these systems integrate different components that increase the complexity of their dynamic model. Thus, in order to ensure an acceptable tracking performance, the implementation of robust control strategies should be considered. This paper proposes a discrete-time model-free-implementation controller, which relies on the well-known structural properties of mechanical systems, but it does not consider any knowledge on the values of the system parameters. Besides, a fuzzy logic formulation is considered to compensate external disturbances. The outputs of the fuzzy inference system are adapted online to improve the closed-loop response. Finally, representatives simulation and experiments are analyzed to demonstrated the feasibility of the proposed approach.  相似文献   

17.
This study presents application of a fuzzy controller to a nonlinear two-mass system control. The proposed controller structure is strengthened with a gray estimator. Firstly, a complete state-space mathematical model for a nonlinear two-mass system is developed and numerically simulated. Then, a fuzzy controller is designed to regulate the speed of the system. In order to perform a dynamic and powerful control action, future error values are estimated by gray modeling technique. The gray estimators of the torsional torque and the load machine speed are tested with open-loop and closed-loop control structures to test the robustness of the proposed method for step changes in input parameters. It is observed that the tracking ability of the gray estimators is not influenced for different operation modes. The performances of the control structures, which are supported with gray estimators, are given and no additional feedbacks are required for robust control action. The simulation results are confirmed by experimental results and conclusions are given.  相似文献   

18.
Gas flow has fractional order dynamics; therefore, it is reasonable to assume that the pneumatic systems with a proportional valve to regulate gas flow have fractional order dynamics as well. There is a hypothesis that the fractional order control has better control performance for this inherent fractional order system, although the model used for fractional controller design is integer order. To test this hypothesis, a fractional order sliding mode controller is proposed to control the pneumatic position servo system, which is based on the exponential reaching law. In this method, the fractional order derivative is introduced into the sliding mode surface. The stability of the controller is proven using Lyapunov theorem. Since the pressure sensor is not required, the control system configuration is simple and inexpensive. The experimental results presented indicate the proposed method has better control performance than the fractional order proportional integral derivative (FPID) controller and some conventional integral order control methods. Points to be noticed here are that the fractional order sliding mode control is superior to the integral order sliding mode counterpart, and the FPID is superior to the corresponding integral order PID, both with optimal parameters. Among all the methods compared, the proposed method achieves the highest tracking accuracy. Moreover, the proposed controller has less chattering in the manipulated variable, the energy consumption of the controller is therefore substantially reduced.  相似文献   

19.
In order to improve the response speed and control precision of the braking system with parameters uncertainty and nonlinear friction, a braking-by-wire system based on the electromagnetic direct-drive valve and a novel cascade control algorithm was proposed in this paper. An electromagnetic linear actuator directly drives the valve spool and rapidly adjusts the pressure of braking wheel cylinders. A dynamic model of electromagnetic direct-drive valve considering improved LuGre dynamic friction is established. A novel cascade control algorithm with an outside loop pressure fuzzy controller and an inside loop electromagnetic direct-drive valve position controller was proposed. An adaptive integral robust inside loop controller is designed by combining friction compensation adaptive control law, linear feedback, and integral robust control. The uncertainty parameters and the friction state are estimated online. The stability of the cascade controller is proved by the Lyapunov method. Then a multi-objective opitimizemization design method of control parameters is proposed, which combines a multi-objective game theory and a technique for order preference by similarity to ideal solution (TOPSIS) based on entropy weight. The results show that the pressurization time of cascade control is less than 0.09 s under the 15 MPa step target signal. The control precision is improved effectively by the cascade controller under the ARTEMIS condition.  相似文献   

20.
In this paper, a command filter-based adaptive fuzzy controller is constructed for a class of nonlinear systems with uncertain disturbance. By using the error compensation signals and fuzzy logic system, a command filter-based control strategy is presented to make that the tracking error converge to an any small neighborhood of zero and all closed-loop signals are bounded. In the design procedure, fuzzy logic system is employed to estimate unknown package nonlinear functions, which avoids excessive and burdensome computations. The control scheme not only resolves the explosion of complexity problem but also eliminates the filtering error in finite-time. An example has evaluated the validity of the control method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号