首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
科学研究   3篇
  2019年   2篇
  2014年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Gas flow has fractional order dynamics; therefore, it is reasonable to assume that the pneumatic systems with a proportional valve to regulate gas flow have fractional order dynamics as well. There is a hypothesis that the fractional order control has better control performance for this inherent fractional order system, although the model used for fractional controller design is integer order. To test this hypothesis, a fractional order sliding mode controller is proposed to control the pneumatic position servo system, which is based on the exponential reaching law. In this method, the fractional order derivative is introduced into the sliding mode surface. The stability of the controller is proven using Lyapunov theorem. Since the pressure sensor is not required, the control system configuration is simple and inexpensive. The experimental results presented indicate the proposed method has better control performance than the fractional order proportional integral derivative (FPID) controller and some conventional integral order control methods. Points to be noticed here are that the fractional order sliding mode control is superior to the integral order sliding mode counterpart, and the FPID is superior to the corresponding integral order PID, both with optimal parameters. Among all the methods compared, the proposed method achieves the highest tracking accuracy. Moreover, the proposed controller has less chattering in the manipulated variable, the energy consumption of the controller is therefore substantially reduced.  相似文献   
2.
In this paper, a robust adaptive control scheme is proposed for the leader following control of a class of fractional-order multi-agent systems (FMAS). The asymptotic stability is shown by a linear matrix inequality (LMI) approach. The nonlinear dynamics of the agents are assumed to be unknown. Moreover, the communication topology among the agents is assumed to be unknown and time-varying. A deep general type-2 fuzzy system (DGT2FS) using restricted Boltzmann machine (RMB) and contrastive divergence (CD) learning algorithm is proposed to estimate uncertainties. The simulation studies presented indicate that the proposed control method results in good performance under time-varying topology, unknown dynamics and external disturbances. The effectiveness of the proposed DGT2FS is verified also on modeling problems with high dimensional real-world data sets.  相似文献   
3.
Raising the level of biological realism by utilizing the timing of individual spikes, spiking neural networks (SNNs) are considered to be the third generation of artificial neural networks. In this work, a novel variable-structure-systems based approach for online learning of SNN is developed and tested on the identification and speed control of a real-time servo system. In this approach, neurocontroller parameters are used to define a time-varying sliding surface to lead the control error signal to zero. To prove the convergence property of the developed algorithm, the Lyapunov stability method is utilized. The results of the real-time experiments on the laboratory servo system for a number of different load conditions including nonlinear and time-varying ones indicate that the control structure exhibits a highly robust behavior against disturbances and sudden changes in the command signal.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号