首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张碧宇 《高中生》2008,(22):70-71
一、不等式性质应用中的错误例1设f(x)=ax~2+bx,且1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围.错解由已知得(1≤a-b≤2,①2≤a+b≤4.②)由①+②得3/2≤a≤3.又由①式得-2≤b-a≤-1.③由②+③得0≤b≤3/2.∴6≤4a≤12,-3≤-2b≤0.∴3≤4a-2b≤12.  相似文献   

2.
1.5≤f(-2)≤10[提示:错解中多次运用同向不等式相加这一性质,使变形过程前后不等价.导致f(-2)取值范围扩大.设f(-2)= mf(-1) nf(1).则4a-2b=m(a-b) n(a b),解得m=3,n=1,即f(-2)=3f(-1) f(1),故5≤f(-2)≤10]  相似文献   

3.
题目 :已知f(x) =ax2 -c,且 -4 ≤f( 1)≤-1,-1≤f( 2 ) ≤ 5 ,求f( 3 )的取值范围 .解法 1 由 a-c =f( 1) ,4a -c=f( 2 ) ,可得a =13 [f( 2 ) -f( 1) ] ,-c =43 f( 1) -13 f( 2 ) .∴f( 3 ) =9a -c=83 f( 2 ) -53 f( 1) ,∵ -83 <83 f( 2 )≤ 403 ,  53 ≤ -53 f( 1) ≤ 2 03 ,∴ -1≤ f( 3 )≤ 2 0 .解法 2 由 -4 ≤ f( 1)≤ -1,得-4≤a-c≤-1. ①由 -1≤ f( 2 )≤ 5 ,得-1≤ 4a -c≤ 5 . ②由① ,得 1≤ -a+c≤ 4,③由③ +② ,得 0 ≤a≤ 3 ,④③ +④ ,得 1≤c≤ 7,⑤即   -7≤ -c≤ -1.∵f( 3 ) =9a -c,∴ -7≤ f( 3 )≤ 2 6.剖析…  相似文献   

4.
正一、案例分析题目:已知二次函数f(x)=ax~2+bx+c的图像过点(-1,0),问是否存在常数a,b,c,使不等式x≤f(x)≤1/2(1+x~2)对一切x∈R都成立?此题不仅在辅导资料上流传甚广,而且它有一种奇妙的解法也比较流行,那就是:对于不等式x≤f(x)≤1/2(1+x~2),令x=1,得到1≤f(1)≤1,从而知f(1)=1,即a+b+c=1①;然后根据二次函数f(x)=ax~2+bx+c的图像过点(-1,0),知a-b+c=0②,由①、②知b=1/2,a+c=  相似文献   

5.
这是一道容易做错的题,本文变换角度,得出四种方法介绍给同学们,希望有参考价值,题目是: 已知②,试求2a-β的取值范围. 解法1 用不等式的性质(①+②)÷2,得-(n/6)≤a≤n/2 ③②+③,得-5/6n≤2a-β≤n/6,  相似文献   

6.
性质 已知数列 an 为等差数列 ,若Sm =a ,Sn =b ,其中m ≠n ,则Sm +n =(m +n) (a-b)m -n .证明 ∵数列 an 为等差数列 ,∴Sn =An2 +Bn .由题设得Am2 +Bm =a ,①An2 +Bn =b ,②①·n-②·m ,得Amn(m-n) =an-bm ,即Amn =an -bmm -n .∴Sm +n =A(m +n) 2 +B(m +n)=Am2 +Bm +An2 +Bn  + 2Amn=a +b + 2an -2bmm -n=(m +n) (a-b)m -n .运用此性质 ,可速解下列问题 .例 1 等差数列的前m项和为 3 0 ,前 2m项和为 10 0 ,则它的前 3m项和为 (   )(A) 13 0  (B) 170  (C) 2 10  (D) 2 60解 ∵Sm =3 0 ,S2m =10 0 ,∴S3m =(m+ 2m) …  相似文献   

7.
有这样一道题:已知:f(x)=ax~2-c,且4≤f(-1)≤-1,-1≤f(2)≤5,则f(3)的取值范围是﹎﹎﹎ 较多的学生解法如下: 解 由题设 由①得:1≤c-a≤4 ③ 由② ③:0≤a≤3(?)0≤9a≤27 ④ 由③得:4≤4c-4a≤16 ⑤ ② ⑤:1≤c≤7(?)-7≤-C≤-1 ⑥ ④ ⑥:-7≤9a-c≤26. 即得:-7≤f(3)≤26. 初看起来,上述解法似乎甚合理,其实这是一个错误的解法。  相似文献   

8.
例 1 已知x >0 ,求函数 y =2x2 +3x的值域 .错解 ∵y=2x2 +3x=2x2 +1x +2x≥ 33 2x2 ·1x· 3x=3 3 6.故所求函数的值域为 [3 3 6,+∞ ) .剖析 由于方程 2x2 =1x =2x 无解 ,即等号不能成立 ,故求解错误 .正解 y=2x2 +3x=2x2 +32x+32x≥ 33 2x2 · 32x· 32x=323 3 6.故所求函数值域为 323 3 6,+∞ .例 2 已知 1≤a+b≤ 5 ,-1≤a-b≤ 3 ,求 3a -2b的取值范围 .错解 ∵ 1≤a+b≤ 5 ,①-1≤a-b≤ 3 ,②∴ 0 ≤ (a +b) +(a-b)≤ 8,∴ 0≤a≤ 4,③∴ 0 ≤ 3a≤ 12 ,又∵ 1≤a+b≤ 5 ,   -3≤-a +b≤ 1,∴ -2 ≤ (a +b) +( -a+b)≤ 6,∴ -…  相似文献   

9.
一、一类计算题解法剖析例1 设f(x)=ax~2+bx。且 1≤f(-1)≤2,2≤f(1)≤4。求f(-2)的范围。(选自文[1]) 解1 学生们对此题最易想到的解法是由题设得(2)+(1)得3/2≤a≤3,(2)-(1)得0≤b≤3/2,故 3≤4a-2b≤12,即3≤f(-2)≤12。剖析满足不等式 (1)的区域是介于平行直线a-b-2=0和a-b-1=0之间的平面带包括边界。满足不等式 (2)的区域是介于平行直线a+6-2=0和a+b-4=0之间的平面带包括边界。故不等式组Ⅰ的解区域为图1中有阴影的矩形。而不等式组  相似文献   

10.
错在哪里     
1.已知函数f(x)=ax+1/x+2在(-2,+∞)内单调递减,求实数a的取值范围. 错解:f(x)=2a-1/(x+2)2由题意得f'(x)≤0在(-2,+∞)内恒成立,即2a-1/(x+2)2≤0在(-2,+∞)内恒成立,故a≤1/2.  相似文献   

11.
一、概述数学思维的反思性表现在善于提出独立见解,精细地检查思维过程,不盲从、不轻信,在解决问题时能不断地验证所拟定的假设,获得独特的解决问题的方法.它和创造性思维高度相关.本讲重点加强同学们思维的严密性的训练,培养创造性思维.二、思维训练实例(1)检查思路是否正确,注意发现其中的错误例1已知f(x)=ax+bx,若-3≤f(1)≤0,3≤f(2)≤6,求f(3)的范围.错误解法由条件得-3≤a+b≤0①3≤2a+2b≤6"②②×2-①得3≤a≤4……③①×2-②得-2≤3b≤-34……④③×3+④得7≤3a+b3≤332,即7≤f(3)≤323.错误分析采用这种解法,忽视了这样一个事实:…  相似文献   

12.
<正>例题已知函数f(x)=ax3-2ax+3a-4在区间(-1,1)上有唯一零点,求实数a的取值范围.这是中学数学教学2010年第二期数学园地里的一道题,作者找出了原来做法的错因并给出了正确的解法.解法如下:①当a=0时f(x)=-4,f(x)在(-1,1)上没有零点,所以a≠0.当a≠0时,f′(x)=3ax2-2a=a(3x2-2),令f′(x)=0得,x=±槡23,又f(-1)=4a-4,f(1)=2a-4,f-槡()23=27+4槡69a-4,f槡()23=27-4槡69a-4.②若a>0时,则当-1相似文献   

13.
向量a与b(b≠0)共线的充要条件是a=λb(或x1y2-x2y1=0).这一结论在近几年高考的解析几何问题中比较常见.本文例谈用它处理三角及代数问题.例1已知一次函数f(x)=ax b且-1≤f(-1)≤2,-2≤f(2)≤3,求f(3)的取值范围.分析由条件知f(-1)=-a b,f(2)=2a b,f(3)=3a b.构造向量a=(2-(-1)  相似文献   

14.
15.
含参的一元二次不等式恒成立问题是高中阶段最简单最常见的恒成立问题,它具有一元二次(不等式、方程和二次函数)的最基本特点,又是研究恒成立问题的最典型的例子.下面通过一个题组来看在新课标条件下,此类题目又有什么新的特点.【题组】(1)对任意x∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,则a的取值范围是.(2)对任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,则x的取值范围是.(3)对任意x∈[-1,1],函数f(x)=x2+(a-4)x+4-2a+a2的值恒大于零,则a的取值范围是.(4)对任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a+a2的值恒大于零,则x的取值范围是.解决问题的基本方法应该是利用二次函数的判别式,根与系数的关系和对称性,通过对其图像位置的讨论得到参数满足的关系式.例如题(1):函数f(x)=x2+(a-4)x+4-2a的对称轴为x=-a-24=42-a.①当42-a&lt;-1,即a&gt;6时,f(x)的值恒大于零,等价于f(-1)=1+(a-4)&#215;(-1)+4-2a&gt;0,解得a&lt;3,故有a∈.②当-1≤4-2a≤1,即2≤a...  相似文献   

16.
二次函数f(x)=ax2+bx+c(a≠0),若a>0,△=b2-4ac≤0,则f(x)≥0;若a<0,△=b2-4ac≤0,则f(x)≤0. 二次方程ax2+bx+c=0(a≠0)有实根,则△=b2-4ac≥0. 以上性质,我们可以用来证明不等式. 例1 已知a,b∈R,且b>0.求证:a2+b2>3a-2ab-3. 证明:被证不等式可变形为  相似文献   

17.
对于函数y=f(X),本文证明了:①若满足f(a+x)=f(b-x),则其图象关于直线x=(a+b)/2对称;②若满足f(a+x)=-f(b-x),则其图象关于点((a+b)/2,0)对称;③若满足f(a+x)=f(b+x),则其周期为a-b;④若满足 f(a+x)=-f(b+x),则其周期为 2(a-b)  相似文献   

18.
题目:函数,f(x)=αx^2-b(a,b∈R)且-4≤f(1)≤-1,-1≤,(2)≤5.求:f(3)的取值范围。  相似文献   

19.
设一次方程f(x)=ax+b=0(a≠0)则:①在区间〔m,n〕内有根的充要条件为f(m)f(n)≤0。②在区间(-∞,m〕内有根的充要条件为af(m)≥0。③在区间〔n,+∞)内有根的充要条件为a·f(n)≤0。借助一次函数图象可以很快验证以上结论。下面请看这些结论的应用。  相似文献   

20.
数学问答     
56.已知函数f(x)=ax~2- c,且-4≤f(1)≤-1≤f(2)≤5,求f(3)的取值范围.(北京市昌平一中翟玉成)解答:f(1)=a-c,f(2)=4a-c,f(3) =9a-c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号