首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
圆锥曲线切线的有关问题,一般都是从曲线上的切点来讨论的。求圆锥曲线的切线方程,总是先求出切点坐标,再求出其方程,本文想用待定系数法来解与二次曲线切线有关的问题,解法上的特色是并非一定先求出切点坐标. 例1 求分别过点(2,3~(1/2))与(0,1)的双曲线的切线方程。解设所求的切线方程为 Ax By=C(1) 由x~2-y~2=1 Ax By=C 得(B~2-A~2)x~2 2ACx-C~2-B~2=0 此方程有重根的条件是 A~2-B~2=C~2(2) 过点(2,3~(1/2))的切线方程,由(1)得  相似文献   

2.
用判别式解题,由于诸种因素的相互制约,稍不留意.就出差错,今给出几例,剖析如下. 例1 求函数y=(x~2-x-1)/(x~2-x 1)的值域. 错解:将原式化为(y-1)x~2-(y-1)x y 1=0,∴ x∈R,故有N=[-(y-1)]~2-4(y-1)(y 1)≥0,解得-(5/3)≤y≤1.∴原函数的值域为-5/3≤y≤1. 剖析:上述解答的错误源于忽略了当y=1时,方程(y-1)x~2-(y-1)x y 1=0无解的情况. 正解:∵x~2-x 1=(x-1/2)~2 3/4≠0.∴原等式可化为(y-1)x~2-(y-1)x y 1=0.∵x∈R,故有△=[-(y-1)]~2-4(y-1)(y 1)≥0.解得-5/3≤y≤1.∵ 当y=1时.方程(y-1)x~2-(y-1)x y 1=0无解,∴y≠1.故原函数的值域是-5/3≤y<1.  相似文献   

3.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

4.
找准切点求切线例1求曲线(fx)=x3-3x2+2x过原点的切线方程.错解由于原点在曲线上,所以原点为切点.而f′(x)=3x2-6x+2,所以f′(0)=2.所以y-0=2(x-0),即所求切线方程为y=2x.  相似文献   

5.
引理不定方程x~2-y~2=c(c∈Z)有整数解的充要条件是c■2(mod4)。证:必要性。若存在整数x、y使x~2-y~2=c■(x y)(x-y)=c,∵x y、x-y同奇偶,∴c是奇数,或者4|c,故c■2(mod4)。充分性。设c■2(mod4),则ⅰ)c≡0(mod4),c/4 1,c/4-1∈z,而(c/4 1)~2-(c/4-1)~2=c,即x~2-y~2=c有整数解(c/4 1,c/4-1)。ⅱ) c≡1(mod4)或c≡3(mod4),(c 1)/2,(c-1)/2∈Z,((c 1)/2)~2-((c-1)/2)~2=c,方程x~2-y~2=c有整数解((c 1)/2,(c-1)/2)。引理证毕。对不定方程x_1~2 x_2~2 … x_n~2=x_(n 1)~2,若令x_i  相似文献   

6.
题:求双曲线的两条互相垂直的切线的交点轨迹。解设双曲线的方程为x~2/a~2-y~2/b~2=1由于双曲线互相垂直的切线其斜率一定存在,且不等于零,故可设其斜率分别为k和-1/k,则两条切线方程分别为 y=kx±((a~2k~2)-b~2)~(1/2),①和 y=-(1/k)x±((k~2/a~2)-b~2)~(1/2)。  相似文献   

7.
高中解析几何课本有这样一类题目:已知双曲线的渐近线方程,再附有其他已知条件,求此双曲线方程.若能运用共渐近线的双曲线系来解此类问题,常能带来方便,本文试图探讨这一问题. 双曲线x~2/a~2-y~2/b~2=1和它的共轭双曲线x~2/a~2-y~2/b~2=1有共同的渐近线x/a±y/b=0. 双曲线系x~2/a~2-y~2/b~2=λ(λ≠0)的渐近线方程也是x/a±y/b=0.  相似文献   

8.
近几年来,关于函数图像的切线问题,逐渐进入高考试卷,并在不断加大考查力度和与相关知识融合的力度,已经成为高考的热点.导数为这类问题的解决提供了新思路、新方法、新途径,拓宽了高考的命题空间.下同介绍高考切线问题的七种类型,并力求运用导数知识解决问题的主要思想方法,供复习参考.1求过一点的曲线的切线方程例1(2007年浙江省高考题)曲线y=x3-2x2-4x+2在点(1,-3)处的切线方程是.解显然点(1,-3)在曲线y=x3-2x2-4x+2上.因为y′=3x2-4x-4,所以y′│x=1=-5,因此所求切线方程为y+3=-5(x-1),即5x+y-2=0.例2(2006年全国高考题)过点(-1,0)作抛物线y=x2+x+1的切线,其中一条为().(A)2x+y+2=0(B)3x-y+3=0(C)x+y+1=0(D)x-y+1=0错解y′=2x+1,y′│x=-1=-1.故过点(-1,0)的抛物线的切线方程是y-0=-1(x+1),即x+y+1=0,所以选C.正解显然(-1,0)不在抛物线y=x2+x+1上.设切点坐标为P(x0,y0),则y0=x20+x0+1.过点P的切线方程是y-(x20+x0+1)=(2...  相似文献   

9.
早在初中代数课上,就已经知道了两数和的平方公式 (x y)~2=x~2 2xy y~2(1)、这一公式的应用是极其广泛的。在这里,我们介绍它的部分应用。 一、推证公式问题 以下乘法公式 (x-y)~2=x~2-2xy y~2 (x y)(x-y)=x~2-y~2 (x y)~3=x~3 3x~2y 3xy~2 y~3 (x-y)~3=x~3-3x~2y 3xy~2-y~3 (x-y)(x~2 xy y~2)=x~3-y~3 (x y)(x~2-xy y~2)=X~3 y~3等都可运用公式(1)来推导 例1、求证:(x y)(x-y)=x~2=y~2 证:令a=(x y)/2,b=(x-y)/2, 则两数x、y的平方差,x~2-y~2=(a b)~2-(a-b)~2运用公式(1)有x~2-y~2=4ab据假设条件,得x~2-y~2=4(x y)/2·(x-y)/2,即x~2-y~2=(x y)(x-y) 例2、求证:(x-y)~3=x~3-3x~2y 3xy~2-y~3 证:将上式右端进行配方变换即得证 x~3-3x~2y 3xy~2-y~3 =x~3-2x~2y xy~2-x~2y 2xy~2-y~3 =x(x-y)~2-y(x-y)~2 =(x-y)~3 类似地,乘法公式都可用公式(1)来推导,此外,还可推证一些多项因式的乘法  相似文献   

10.
1.题目 初中《代数》第三册78页第1(6)题是:解方程((x~2-1)/x)~2 7/2(x~2-1)/x 3=0。(1) 解:设(x~2-1)/x=y,于是原方程变形为y~2  相似文献   

11.
1、问题的提出:《平面解析几何》课本的给出了双曲线方程x~2/a~2-y~2/b~2=1的渐近线方程x/a±y/b=0,即x~2/a~2-y~2/b~2=0。于是一些学生误认为,一般双曲线方程,只要令其常数为零,即得双曲线的渐近线方程,然而事实并非如此,因为双曲线方程与其渐近线方程相差一个常数。 2、《解析几何答疑解惑》(陕西人民教育出版社)p110有一个结论;以y=±3/5x为渐近线的双曲线方程为:  相似文献   

12.
教师加强教学研究是提高教学水平必由之路,而对习题的钻研探讨则是教学研究的一个重要方面。本人在对习题钻研探讨中受益非浅。 一、问题的提出 普高课本《平面解析几何》的P90第七题:求与双曲线x~2/9-y~2/16=1有共同的渐近线且过点A(-3,2 3~(1/2))的双曲线方程 该题的一般解法: (1)求出已知双曲线的渐近线方程; (2)根据已知点A坐标及渐近线方程,判别双曲线的焦点在何轴上,再假设出所求的双曲线方程,(或分焦点在x轴上或在y轴上两种情况讨论,但其中的一种情况无解); (3)根据条件,求出方程中的待定常数。 二、问题的解决 其解法繁在第二步,为了简化这一问题,先讨论下面的问题:由于双曲线x~2/9-y~2/16=1与x~2/32-y~2/18=1(即x~2/9-y~2/16=-2)的渐近线方程都为y=±4/3 x,由此可见不同的双曲线可能有相同的渐近线。反之,以已知直线为渐近线的双曲线有无数条。  相似文献   

13.
初中《代数》第三册P.115例5是:已知方程x~2-2x-1=0,利用根与系数关系求一个一元二次方程,使它的根是原方程的各根的立方。其实,本题若不利用根与系数的关系,也可获解,请看: 解:设y为新方程任一根,则对原方程相应的根x有:y=x~3。由原方程得:X~2=2x+1,所以x~3=2x~2+x=2(2x-1)+x=5x+2。因此,y=5x+2,即x=(y-2)/5,将它代入原方程并化简即得所求方程:y~2-14y-1=0。  相似文献   

14.
裘良 《中学教研》2007,(2):37-38
文献[1]提供了一道奥赛题,这是一个三元对称不等式:题目设正实数 a,b,c 满足 a b c=1.证明:10(a~3 b~3 c~3)-9(a~5 b~5 c~5)≥1.(1)1 不等式的另证引理已知函数 f(x)=x 3x~2-x~3-3x~4,则当1≥x y≥x≥y≥0时,f(x)≥f(y)≥0.(2)证明当1≥x y≥x≥y≥0时,首先f(y)=y 3y~2-y~3-3y~4=y(1 3y)(1-y~2)≥0;其次f(x)-f(y)=(x-y) 3(x~2-y~2)-(x~3-y~3)-3(x~4-y~4)=(x-y){1-(x~2 xy y~2) 3(x y)[1-(x~2 y~2)]}.因为 x-y≥0,又1-(x~2 xy y~2)≥(x y)~2-(x~2 xy y~2)=xy≥0,1-(x~2 y~2)≥(x y)~2-(x~2-y~2)=2xy≥0,所以 f(x)-f(y)≥0,即 f(x)≥f(y)≥0.不等式《1)的证明为方便起见,记f(x)=x 3x~2-x~3-3x~4  相似文献   

15.
算术——几何平均值的应用非常广泛,这是大家所熟知的。本文的目的是说明它除了用来证明不等式和求函数的极值外,还能解决一些特殊方程的问题。兹仅举二例略述一二,供参考。例1.求方程x(2-y~2)~(1/2) y(2-x~2)~(1/2)=2的正整数解解:∵ x,y为正数, ∴ x(2-y~2)~(1/2)≤(x~2 (2-y~2)/2 (1) (等号仅在x~2=2-y~2成立) y(2-x~2)~(1/2)≤(y~2 (2-x~2)/2 (2) (等号仅在y~2=2-x~2成立) (1) (2)得:x(2-y~2)~(1/2) y(2-x~2)~(1/2)≤2 但由方程x(2-y~2)~(1/2) y(2-x~2)~(1/2)=2 显然等号在x~2=2-y~2和y~2=2-x~2时取得故 x~2=2-y~2即x~2 y~2=2 ∵ x,y为正整数,∴ x=1,y=1  相似文献   

16.
因忽略题中的隐晦条件而造成解题失误,是许多同学解题时易犯的一种错误。例 已知实数x,y满足等式x~2 4y~2-4x=0,求x~2-y~2的最大值和最小值。 有的同学求解如下: 解:∵ x~2 4y~2-4x=0, ∴ y~2=x-1/4x~2。 (1) ∴ x~2-y~2=x~2-(x-1/4x~2) =5/4x~2-x=5/4(x-2/5)~2-1/5 (2) 由(2)式可知,x~2-y~2没有最大值;当x=2/5时,x~2-y~2有最小值,其最小值为-1/5。  相似文献   

17.
定理过双曲线上一点 P 作切线交渐近线于点A、B,则(1)PA=PB;(2)△OAB(O 为双曲线的中心)的面积为定值.证明:不妨设双曲线的方程为 x~2/a~2-y~2/b~2=1(a>0,b>0),渐近线为 y=±(b/a)x,P(x_0,y_0)为双曲线上任一点,则 AB 的方程为 xx_0/a~2-yy_0/b~2=1,与 y=±(b/a)x 联立,  相似文献   

18.
各已知渐近线方程 f_1(x)=0,f_2(x)=0而不知双曲线方程类型情况下,求双曲线方程可通过设方程为f_1(x)·f_2(x)=λ(λ≠0)来确定.例1 求以4x-3y=0,4x 3y=0为渐近线方程且过 P(4 (3~(1/2),8)的双曲线方程.解:渐近线方程可变为(4x-3y)(4x 3y)=16x~2-9y~2=0  相似文献   

19.
一、填空题(每空3分,共36分) 1.64~(1/2)的平方根是____。 2.分解因式x~2-y~2 2y-1=____。 3.a是实数,a 2|a|=____。 4.已知a、b是方程2x~2-3x 1=0的两根。则(b/a)~(1/2) (a/b)~(1/2)=____。 5.数据9.2,9.4,9.9,9.2,9.8,9.5的众数、中位数、平均数之和是____。 6.已知a,b是不等式组 3(x 1)>4x 2, x/2≥(x-1)/3的整数解,且a-b-3。则a b=____。 7.已知a~2 b~2=1,a b=1/5。那么a:b  相似文献   

20.
文[1]给出了黄金椭圆的若干性质,笔者读后深受启发.经过类比研究,笔者发现离心率为(5~(1/2) 1)/2的双曲线具有与黄金椭圆类似的性质,现阐述如下,供大家参考.定义:若双曲线 x~2/a~2-y~2/b~2=1(a>0,b>0)的离心率为黄金比=(5~(1/2) 1)/2的倒数(记ω:c/a=(5~(1/2) 1)/2),则称双曲线为黄金双曲线.性质1:黄金双曲线都具有方程 x~2/a~2-y~2/(ωa~2)=1的形式.证明:因为 b~2=c~2-a~2=(ω~2-1)a~2=  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号