首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
不等式恒成立问题是高考中一类常见的典型问题.这类问题的解决,大多可用函数的观点来审视,用函数的有关性质来处理.而导数是研究函数性质的有力工具,因而将不等式f(x)≥g(x)恒成立转化为F(x)=f(x)-g(x)≥0恒成立问题,再用导数方法探讨F(x)的单调性及最值,就顺理成章了.一、利用函数的单调性例1(2006年全国卷Ⅱ)设函数f(x)=(x 1)ln(x 1).若对所有x≥0,都有f(x)≥ax成立,求实数a的取值范围.解:构造相应函数g(x)=(x 1)ln(x 1)-ax,于是不等式f(x)≥ax转化为g(x)≥g(0)对x≥0恒成立的问题.对g(x)求导数,得g′(x)=ln(x 1) 1-a.令g′(x)=0,解得x=e…  相似文献   

2.
1问题呈现问题1(2020全国Ⅱ卷文21)已知函数f(x)=2 ln x+1.(1)若f(x)≤2x+c,求c的取值范围;(2)设a>0,讨论函数g(x)=f(x)-f(a)x-a的单调性.问题2(2020天津卷20)已知函数f(x)=x 3+k ln x(k∈R),f′(x)为f(x)的导函数.(1)当k=6时,(i)求曲线y=f(x)在点(1,f(1))处的切线方程;(ii)求函数g(x)=f(x)-f′(x)+9 x的单调区间和极值.  相似文献   

3.
在人教教材中有一个不等式ex>1+x(x≠0),利用这个不等式及其变形可以证明不等式或恒成立问题,比直接用导数求解要简单,而且可以避免复杂的求导运算。原形:ex≥1+x当且仅当x=0时,等号成立;变形:ln(x+1)≤x(x>-1)当且仅当x=0时,等号成立;用导数证明很容易,过程略。例1(2013年新课标Ⅱ)已知函数f(x)=ex-ln(x+m)。  相似文献   

4.
<正>一、题目在讲完一元二次不等式这节内容后,有这样一道课后的习题:设二次函数f(x)=ax2+bx+c,函数F(x)=f(x)-x的两个零点为m,n(m0的解集;(2)若a>0,且0相似文献   

5.
设函数f(x)=x/1+x-aln(1+x),g(x)=ln(1+x)-bx.(1)若函数f(x)在x=0处有极值,求函数f(x)的最大值;(2)是否存在实数b,使得关于x的不等式g(x)<0在(0,+∞)上恒成立?若存在,求出b的取值范围;若不存在,说明理由.  相似文献   

6.
用导数证明不等式是证不等式的一种重要方法,证明过程往往简捷、明快,特别是证明超越不等式,更是如鱼得水.证明的第一步要考虑如何构造函数,是证明的关键.若函数构造恰当,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式.本文谈谈在用导数证明不等式时,构造辅助函数的几种常用途径.途径一构造差函数直接作差,即构造差函数,是构造辅助函数的最主要方法.例1求证:不等式x-x22<1n(1+x)0,所以y=f(x)在(0,+∞)上单调递增,因为x>0,且f(x)在…  相似文献   

7.
题2019年全国II卷理科数学第20题.已知f(x)=ln x-x+1 x-1,(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x 0是f(x)的零点,证明曲线y=ln x在点A(x 0,ln x 0)处的切线也是曲线y=e x的切线.该试题中,函数y=ln x在函数f(x)的零点处的切线为曲线y=ln x与y=e x的公切线,那么,函数y=ln x和y=e x的图象分别与函数y=x+1 x-1的图象交点与它们的公切线有何关系?一般地,指数函数y=a x和对数函数y=log ax(a>0且a≠1)图象的公切线又有何相应的结论?本文对此加以探索.  相似文献   

8.
正笔者在批改学生作业时发现,学生在不等式恒成立的条件下求参数范围竟然不知所措,因此笔者觉得有必要对此类问题进行简单分析,并对几种方法进行对比分析,以供同行研讨.1.问题的提出已知函数f(x)=ln(x-1)-k(x-1)+1(k∈R),(1)若k=2,求以M(2,f(2))为切点的曲线的切线方程;(2)若函数f(x)≤0恒成立,确定实数k的取值范围;(3)证明:  相似文献   

9.
正一般来说,欲证不等式f(x)g(x)(或f(x)g(x))在区间I上恒成立,则可构造函数h(x)=f(x)-g(x),通过讨论h'(x)在区间I上的符号情况,判断出h(x)的单调性,然后由函数h(x)在区间I上的一个初始值,证得不等式成立.但有时由于方程h'(x)=0的根不好求,或者利用初等方法根本求不出来,于是我们可以分别考虑f(x)与g(x)的最值来完成.本文就证明f(x)g(x)(或f(x)g(x))恒成立的几种常见思考方法梳理如下.1.构造函数h(x)=f(x)-g(x),判断函数h(x)的单调性,给出h(x)的一个初始值  相似文献   

10.
2013年高考全国卷理科压轴题 已知函数f(x)=ln(1+x)-x(1+λx/1+x).(Ⅰ)若x≥0时,f(x)≤0,求λ的最小值; (Ⅱ)设数列{an}的通项an=1+1/2+1/3+…+1/n,证明:a2n-an+1/4n>ln 2. 另解 (Ⅰ)先证当λ≥1/2时,f(x)≤0(x≥0)恒成立,即证(1+x)In(1+x)≤x(1+1/2x)(x≥0),即1/2x2+x-(x+ 1)ln(x+1)≥0(x≥0). 设g(x)=1/2x2+x-(x+1)ln(x+1)(x≥0),得g’(x)=x-ln(x+1)(x≥0).  相似文献   

11.
一、解函数题例1.方程lgx+x-3=0的解x0所在区间为以下选项中的哪一个?A(0,1)B(1,2)C(2,3)D(3,∞)解析:如图1,先构造函数f(x)=lgx与g(x)=3-x并作出它们的图象,如图1可知可以确定x∈(1,3),但f(2)-g(2)=lg2-1<0,即x=2时,f(x)2.同理:f(3)-g(3)=lg3-0>0,即x=3时,知f(x)>g(x),∴x0<3.∴答案为C.例2.求函数y=x√+1-x√的值域.解析:作y1=x√,y2=1-x√的图象,如图2,由函数图1的定义域为[0,1]和图象知:函数在x=0,x=1时,有最小值1;在x=12时,取最大值2√.(对称性图象)∴函数的值域是[1,2√].二、解不等式例3.求不等式5-4x-x2√≥x解集.图2…  相似文献   

12.
构造函数,将不等式问题化为函数问题,再利用导数来解决,这为简化解题思路提供了新的方法.例1(2004全国卷二22题)已知函数f(x)=ln(1 x)-x,g(x)=xlnx,(Ⅰ)求函数f(x)的最大值.(Ⅱ)设0相似文献   

13.
※求值问题※例1:已知函数f(x)=x2(x>0),1(x=0)0(x<0)".,求f{f[f(-3)]}的值.分析:明确自变量在函数的哪一个段上,是解此类题的关键.解:∵-3<0,∴f(-3)=0,∴f[f(-3)]=1,∴f{f[f(-3)]}=f(1)=12=1.※求解析式问题※例2:已知f(x)=x,g(x)=-x+1,!(x)=-12x+2.设f(x),g(x),!(x)的最大值为F(x),求F(x)的解析式.分析:本题的关键是画出图象,求出交点,从而正确地分段,再在各段上写出符合要求的解析式,最后写出分段函数的解析式.解:如图,画出f(x),g(x),!(x)的图象,下面再求交点坐标.!由y=-x+1,y=-21x+2".得yx==3-2,".由y=x,y=-12x+2".得y=34%%%%$%%%…  相似文献   

14.
在近年的高考试题中,经常会出现以ex与ln x为背景的函数不等式的证明问题,而学生普遍感觉比较困难,下面对此类问题加以探讨,供读者参考.一、以ex为背景的函数不等式例1(2014年福建理科卷20题第(Ⅱ)问)证明:当x>0时,x2相似文献   

15.
正三次函数及其相关的问题,近年来在各级各类考查试卷中经常出现,其中大部分题型都可利用导数法来求解.本文介绍几种常见类型的求解方法,供参考.一、三次函数的切线例1已知函数f(x)=x3-x+2,试求过点P(1,2)的曲线y=f(x)的切线方程.解析设切点P0(x0,y0),由f'(x)=3x2-1,则f'(x0)=3x20-1,过点P0的方程为y-y0=f'(x0)(x-x0),即y-(x30-x0+2)=(3x20-1)(x-x0).又切线过点P(1,2),则2-(x30-x0+2)=(3x20-1)(1-x0),分解因式得(x0-1)2(2x0+1)=0,解之得x0=1或x0=-12.则f'(-12)=-14,f'(1)=2.故所求的切线方程为y-2=-14(x-1)和y-2=2(x-1).  相似文献   

16.
正近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,而盲目求导或求导后处理不当,又常使解题陷入绝境.为此,本文以近几年高考题或改编题为例介绍两种局部策略,便可轻松应对高考压轴题.一、原函数的局部策略1.原函数的局部求导将所要证明的问题直接(或间接)的转化为:证明F(x)0(或≥0),而F(x)往往比较复杂,直接求导会更复杂,使解题无法进行下去,这时可将函数式F(x)化成F(x)=h(x)·g(x)(或h(x)/g(x)),其中f(x)与g(x)有一个可明显判断出是否大于零,而另一个函数式又远比F(x)简单,这样就可以做局部处理,对这个函数进行求导,判断其单调性.使问题迎刃而解.例1(2011新课标文)已知函数f(x)=alnx/x+1等+b/x,曲线y=f(x)在点(1,f(1))处的切线方程为  相似文献   

17.
题目 已知函数f(x)=ex-ln(x+m). (Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (Ⅱ)当m≤2时,证明f(x)>0. (Ⅰ)略. (Ⅱ)解法1 当m≤2,x∈(-m,+∞)时,恒有ln(x+m)≤ln(x+2),即只需证明m=2时成立,即ex-ln(x+2)>0即可. 即证明ee|-x-2 >0. 设g(x)=eex-x-2,g’(x)=ex+ex-1, 因为g″(x)=ex+ex(1+ex)>0,知g’(x)在(-2,+∞)上为单调递增函数.  相似文献   

18.
题目已知函数f(x)=lnx+kex(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e-2.本题是2012年山东高考数学理科试题函数问题压轴题,在知识上主要考查函数的定义域、单调性,导数、导数的几何意义,不等式的证明;  相似文献   

19.
下面以具体的问题来体现函数单调性的妙用,供大家欣赏.一、考虑函数最值【例1】 求函数f(x)=x3-3x2+5x+1,x∈[-1,1]的最值.分析:对于这个问题许多学生感到为难,但如果从单调性入手则会充分显现其优越性.由f(x)=x3-3x2+5x+1的特点易知f(x)可变形成f(x)=(x-1)3+2(x-1)+4,则可设t=x-1,则函数f(x)可变成y=t3+2t+4,t∈[-2,0],所以要求原函数的最值只要求y=t3+2t+4,t∈[-2,0]的最值,易证y=t3+2t+4,t∈[-2,0]是单调递增函数,所以当t=-2时此函数有最小值为-8,当t=0时此函数有最大值为4,从而当x=-1时,原函数有最小值为-8,当x=1时,原函数有最大值为4.…  相似文献   

20.
<正>1考情新动向题1(2018年高考全国3卷理科)已知函数f(x)=2(+x+ax2)ln(1+x)-2x.(1)若a=0,证明:当-10时,f(x)>0;⑵略.命题组给出的标准答案如下:(1)当a=0时,f(x)=2(+x)ln(1+x)-2x,f′(x)=ln(1+x)-x/1+x.设函数g(x)=f′(x)=ln(1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号