首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在高二《平面解析几何》里我们知道:如图1,设P_1(x_1,y_1),P(x,y),P_2(x_2,y_2),定义点P分有向线段  相似文献   

2.
今年高校统考数学试卷第九题: 给定双曲线x~2-y~2/2=1, (1)过点A(2,1)的直线与所给双曲线交于两点P_1及P_2,求线段P_1P_2的中点P的轨迹方程。 (2)过点B(1,1)能否作直线m,使m与所给双曲线交于两点Q_1及Q_2,且点B是线段Q_1Q_2的中点?这样的直线如果存在,求出它的方程;如果不存在,说明理由。解这一类问题,一般是联立曲线方程得方程组,化为一元二次方程,利用韦达定理,而不必求出交点坐标。解:(1)设各点坐标为P_1(x_1,y_1)、P_2(x_2,y_2)、P(x,y),又设过点A(2,1)的直线1的方程为y-1=k(x-2),即y=kx (1-2k),与  相似文献   

3.
线段的定比分点坐标公式x=(x_1 λx_2)/(1 λ),y:(y_1 λy_2)/(1 λ),λ=(x-x_1)/(x_2-x)反映了线段的起点P(x_1,y_1)、终点P_2(x_2,y_2)、分点P(x,y)与定  相似文献   

4.
解析几何中的中点坐标公式大家是十分熟悉的:由这个公式易看出一个事实,即x_1,x,x_2;y_1,y,y_2两组数都是等差数列,不妨设其公差分别为d_1,d_2。本文的目的在于探讨这两个公差之比的几何意义及其应用。设P_1(x_1,y_1),P_2(x_2,y_2)分别是直线l与二次曲线C的两个交点,P(x,y)为P_1P_2的中点,则d_2/d_1就是弦P_1P_2的斜率k。这一几何意义是不难证明的事实上,d_2/d_1=(y-y_1)/(x-x_1)=k。  相似文献   

5.
本文给出一个关于直线分线段所成比的性质定理。并举例说明它的广泛应用.定理设直线 l:Ax By C=0与过P_1(x_1,y_1)、P_2(x_2,y_2)的不同两点的连线相交于点 P(不同于 P_1、P_2,且 P_1、P_2不在 l上),则  相似文献   

6.
我们知道,在直角坐标系中,设点P_1(x_1,y_1)、P_2(x_2,y_2),若点P(x,y)为有向线段P_1P_2的内(外)分点,则点P分P_1P_2所成的比λ为 λ=(P_1P)/(PP_2)=(x-x_1)/(x_2-x)(=(y-y_1)/(y_2-y)>0(<0)。 (*) 特别地,当线段P_1P_2落在x轴上时,纵坐标为0,情形就更加明了(以下讨论仅在x轴上进行,且不妨约定x_10(λ<0),则P为P_1P_2的内(外)分点,亦即P点介于P_1P_2之间(之外),这时有x_1相似文献   

7.
椭圆以某定点为中点的弦并非一定存在,那么,中点弦存在的充要条件是什么?有何应用,本文作下列探讨: 一中点弦方程的一种求法。设椭圆b~2x~2 a~2y~2-a~2b~2=0,(a>0,b>0)…(1) 及定点P_0(x_0,y_0),若以P_0为中点的弦存在,且两端点分别为A(x_1,y_1),B(x_2,y_2) 则:b~2x_1~2 a~2y_1~2-a~2b~2=0 b~2x_2~2 a~2y_2~2-a~2b~2=0 两式相减整理得: (y_1-y_2)/(x_1-x_2)=(x_1 x_2)/(y_1 y_2)·b~2/a~2 =-b~2/a~2·x_0/y_0 (x_1≠x_2) 即k=-(b~2x_0)/(a~2y_0),代入点斜式得中点弦方程:a~2y_0y b~2x_0x=a~2y_0~2 b~2x_0~2……(2) 如果x_1=x_2,那么y_0=0,中点弦方程为x=x_0仍包含在(2)中。  相似文献   

8.
设P_1、P_2是直线l上的两点,点P是l上不同于P_1、P_2的任意一点,则存在一个实数λ,使(?)=λ(?),λ叫做点P分有向线段(?)所成的比,记为λ=(?).若P_1(x_1,y_1)、P_2(x_2,y_2)、  相似文献   

9.
我们熟知:当已知线段两端点为P_1(x_1,y_1)、P_2(x_2,y_2)、点P(x,y)分所成的比为λ时,点P的坐标是: x=(x_1+λx_2)/1+λ,y=(y_1+λy_2)/1+λ(λ≠-1) 如果我们将上述线段更换为圆柱、棱柱、圆台、棱台、圆锥、棱锥,则可得到一组与线段定比分点坐标公式形式相似的结论: 若换线段为棱台有:结沦一:设棱台上、下底的面积分别为S′、S,平行于两底的截面积为S_0,若截面分高的上、下两部分之比为λ,则:  相似文献   

10.
关于圆锥曲线弦的求法,笔者得到一条结论,现提供于下。 定理:设圆锥曲线C的方程为F(x,y)=0,M、N为C上不同两点,若线段MN的中点为P(a,b),则直线MN的方程为 F(x,y)-F(2a-x,2b-y)=0。 (*) 证明:设M点的坐标为(x_1,y_1),M在圆锥曲线C上,F(x_1,y_1)=0。又因为线段MN的中点P的坐标为(a,b),N的坐标为(2a-x_1,2b-y_1)。又N在圆锥曲线C上,  相似文献   

11.
一阶导数与二次曲线弦中点间存在着一种内在联系,这种联系为解决二次曲线中点弦一类问题开辟了一条较为简捷的路径.本文就以定理形式揭示这种联系并列举应用. 定理:椭圆x~2/a~2 y~2/b~2=1的以斜率为k的一组平行弦中点轨迹方程是x~2/a~2 yy_x~'/b~2=0(※)(|x|≤a,|y|≤b)其中y_x~'就是平行弦的斜率k,它等于直线(※)与椭圆交点处切线的斜率. 证明:设点P(x_0,y_0)是以k为斜率的弦P_1P_2的中点,点P_1(x_1,y_1),P_2(x_2,y_2)  相似文献   

12.
文[1]讨论了凸多边形的绝对值方程.本文给出多边形的参数方程.我们知道,如P_1和P_2坐标分别为(x_1,y_1)和(x_2,y_2),则线段P_1P_2可由如下参数方程给出:  相似文献   

13.
在变换φ下,xOy平面内的点P(x,y),变换为uOv平面内的点尸P~1(u,v)。设xOy平面内的点P_1(x_1,y_1)、P_2(x_2,y_2),通过变换φ,在uOv平面内对应的点分别为P_1′(u_1,v_1)、P_2′(u_2,v_2)(x_1≠x_2,u_1≠u_2),则有  相似文献   

14.
本文提供一种有关二次曲线弦中点的题目的解法,此法应用面较宽,且思路清楚,规律性强,计算简单,便于掌握。此法是以下面定理为基础的。定理若直线l与二次曲线C:f(x,y)=0交于P_1、P_2两点,P(x_0,y_0)是线段P_1P_2的中点,那么直线l的方程是  相似文献   

15.
考虑到定比分点公式中λ是有向线段的比,我们可以很容易地得到一个很有用处的定理:过 P_1(x_1,y_1),P_2(x_2,y_2)两点的直线若与直线L:Ax+By+C=0相交于点P,则  相似文献   

16.
本文介绍利用直线两点式参数方程来证明比例式的一种规范化有效方法,供参考。一、直线两点式参数方程如图, 设P_1(x_1,y_1)、P(x_2,y_2)、P(x,y)都是直线l上的点,且P_1P/PP_2=λ则(x=x_1+λx_2/1+λ)/(y=y_+λy_2/1+λ)(λ为参数,λ≠-1) 即为过P_1、P_2两点的直线的参数方程。∵由(x_1-x_2)/(x-x_2)=1+λ 及  相似文献   

17.
我们知道,若P_1(x_1,y_1),P_2(x_2,y_2),P(x,y),且P分P_1P_2的比为λ(λ=-1),见y=y_1 λy_2/1 λ或λ=y-y_1/y_2-y。由公式易得: 1°.λ>0(?)y介于y_1、y_2之间。  相似文献   

18.
设P_1(x_1,y_1),P_2(x_2,y_2)是坐标平面上的两点,直线L的方程为f(x,y) =ax by C=0,二次曲线G的方程为 F(x,y)=Ax~2 Bxy Cy~2 Dx十Ey十F=0.1 若记直线P_1P_2与直线L的交点为P(x,y),并且P点分所成的比为λ(λ≠-1).则 x=(x_1 λx_2)/(1 λ),y=(y_1 λy_2)/(1 λ).代入方 程f(x,y)=0得:a(x_1 λx_2) b(y_1 λy_2) c(1 λ)=0,即ax_1 by_1 c λ(ax_2 by_2 c)=0.  相似文献   

19.
设A(x_1,y_1),B(x_2,y_2)两点在椭圆(x~2)/(a~2) (y~2)/(b~2)=1(a>b>0)上,M(x_0,y_0)是AB的中点,则有(?)由③-④得  相似文献   

20.
本文介绍抛物线弦所在直线的方程及其应用。设P_1P_2为抛物线y~2=2px的弦,其端点坐标分别为(x_1,y_2),(x_2,y_2),则P_1P_2所在直线方程为 (y-y_1)(y_1+y_2)=2px-y_1~2 (*) 证明:P_1P_2不垂直于y轴时,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号