首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
题求过定点P(2,3)且在两轴上截距相等的直线的方程。解若设两截距为a,则有:x/a+y/a=1,即 x+y=a。因为直线过(2,3)点,所以2+3=a,即a=5。因此所求的方程为x+y=5。上面的解法见日本(竹世)部贞市郎编《几何学辞典》中译本第3498题。  相似文献   

2.
一部分同学在求直线方程时,由于对直线方程几种形式适用范围认识不清,有的是做题方法不当.经常会出现“漏解”现象.现举几例,进行剖析,希望大家从中汲取教训、澄清概念. 1.使用直线方程的截距式常导致漏解例1 求过点P(2,3),并且在两坐标轴上的截距相等的直线方程. 错解:设所求直线方程为x/a+y/b=1. 依题知a=b,且P(2,3)在直线上,代入得: 2/a+3/a=1,因此,a=5,b=5. 所求直线方程为x+y=5. 剖析:直线方程的截距式x/a+y/b=1只适用于ab≠0的形式.  相似文献   

3.
在直线方程中,截距的定义为:如果直线和x轴的交点为(a,0),则a叫做直线在x轴上的截距,简称横截距.如果直线和y轴的交点为(0,b),则b叫做直线在y轴上的截距,简称纵截距.当直线经过原点时,即a=b=0时,横截距和纵截距相等,都是0.某数学书中有这样一道题:求过点P(3,-2),并且在两轴上的截距相等的直线方程.原书解法为:设直线在两轴上的截距为a,则所求直线方程为由点P(3,-2)在直线上,得=1,解得a=1.所得直线方程为x y=1.这里少了一个解.上面已谈到,直线经过原点时,a=b=0,就不适用于截距式方程,但这一点极易…  相似文献   

4.
在解题过程中学生常出现的问题之一是就题论题,死搬硬套,只看到题目的一个方面,而看不到问题的另一方面。现就本人教初中数学第六册第五章“直线和圆的方程”时所碰到的一些情况举例如下。例1 已知直线l经过点(3,-4),且在两坐标轴上的截距相等,求直线l的方程。不少学生的做法是,设所求直线l的方程是x/a+y/b=1,因l经过点(3,-4),在两轴上截距相等,故有3/a+-4/a=1,解得a=-1,所以直线l的方程为x/-1+y/-1=1。即x+y+1=0。  相似文献   

5.
<正>直线是解析几何的基础内容,直线方程独立命题的试题虽然不多,但是常常把直线与圆锥曲线等内容综合在一起,成为高考试卷中的中档题或高档题,解题时,如果考虑问题不周全往往会造成漏解现象。一、概念不清致误例1直线l过点P(2,3),且在x轴和y轴上的截距相等,求l的方程。错解:设所求直线方程为x/a+y/a=1,将  相似文献   

6.
例扭直线l过点邢,l),且分别交x轴,y轴的正半轴于点A,B,O为坐标原点,求当△AOB的面积最小时的直线l的方程。思路一因为直线之已过一定点户飞2,l),所以可以先设出直线止的点斜式方程,且易知直线止的斜率k眨0。解设过P的直线l的方程为y一1球(x一2),则该直故所求直线‘的方程为y--卜一令(x一2),‘线在x轴,y轴上的截距分别为翔二2k一1__:。L ~一几,一一理护1一‘几蕊D即x Zy--4=0思路二由于本题中的△AOB的两直角边长就是直线l的横纵截距,且横纵截距均大于零,因此联想到直线方程的截距式。解设设过p的直线l的方程为三十答=1…  相似文献   

7.
1直设线直方线程l的经各过种点形P式都可以统一为点向式0(x0,y0),v=(a,b)为其一个方向向量(ab≠0),P(x,y)是直线上的任意一点,则向量P0P与v共线,根据向量共线的充要条件,存在唯一实数t,使P0P=tv,即x=x0+at,y=y0+bt.消去参数t得直线方程为x-x0a=y-y0b将其变形为b(x-x0)=a(y-y0).易证当ab=0时直线方程也是b(x-x0)=a(y-y0),我们称方程b(x-x0)=a(y-y0)为直线的点向式方程.1)经过点P0(x0,y0)且斜率为k的直线方程:斜率为k的直线方向向量为(1,k),代入点向式得直线方程为k(x-x0)=(y-y0).即为直线方程的点斜式.2)直线斜率为k,在y轴的截距为b,代入点向式得直线方程为k(x-0)=(y-b),也就是直线方程的斜截式.3)经过两点P1(x1,y1),P2(x2,y2)的直线方程:直线方向向量为(x2-x1,y2-y1),代入点向式得直线方程为(y2-y1)(x-x1)=(x2-x1)(y-y1),即为两点式.4)在x轴的截距为a,在y轴的截距为b的直线方程:直线方向向量为(0,b)-(a,0)=(-a,...  相似文献   

8.
1应用均值不等式(a+b/2)≥ab~(1/2)(a>0,b>0)求最值例1过点A(1,4)的直线l在两坐标轴上的截距均为正数,则使两截距之和最小的直线l的方程?解析欲使直线l的两截距之和最小,即在x轴上截距为1+ta4nα,在y轴上截距为4+tanα,因而5+tanα+ta4nα最小,于是有5+tanα+ta4nα≥9.等号成立的条件:当且仅当tanα=tan4α,即tan2α=4,∴tanα=±2(舍去-2),∴k=tanβ=-tanα=-2,∴y=-2x+b.又直线l过(1,4)点,∴b=6.故所求直线l方程为2x+y-6=0.评注利用均值不等式一定要注意等号成立的条件及适用的范围.2利用数形结合求最值图1例2一束光线从A(1,-1)出发经x轴反射到圆C:(x-2)2+(y-3)2=1上的最短路程是多少?解析圆C的圆心坐标为(2,3)半径r=1,点A(-1,1)关于x轴的对成点A′的坐标为(-1,1),因A′在反射线上,所以最短的距离为│A′C│-r-│A′B│,直线A′C的方程为4x-3y+1=0,即B-14,0,如图1.│A′B│=-1+412+12=45,│A′C│=(2+1)2+(3+1)2=5...  相似文献   

9.
苏教版必修二课本第77页有这样一道习题:已知两条直线alz+61y+1=O和a2x+62y+1=0都过定点A(1,2),求过两点P,(a1,b1),P2(a2,b2)的直线方程.本题的解法是:因为两直线都过A(1,2),所以a,+2b1+1=0,a2+2b2+1=0.由于(a1,b1)和(a2,b2)均适合方程x+2y+1=O,所以所求直线方程为X+2y+1=0.这种求直线方程的方法不同于我们求直线方程的常规方法,  相似文献   

10.
数学问答     
1.求过点P(3,2)且在两坐标轴上截距之和为零的直线方程.(macd@163.com)解答:若直线不过原点,可设直线方程为ax y-a=1.由P(3,2)在直线上,得3a -2a=1,解得a=1,所求直线方程为x-y-1=0.若直线过原点,可设直线方程为y=kx.由P(3,2)在直线上,得2=3k,解得k=23,所求直线方程为y=32x.综上  相似文献   

11.
题目 点P与点F( 2 ,0 )的距离和与直线x =8的距离的比是 1∶ 2 ,求点P的轨迹方程 ,并说明轨迹是什么图形 .解法 1:设P(x ,y)是轨迹上的任意一点 ,它到直线x =8的距离为d ,则|PF|d =12 ,即(x -2 ) 2 y2|x -8|=12 .两边平方、整理得x2 2y2 8x =5 6,也就是(x 4 ) 272 y23 6=1.这就是所求动点P的轨迹方程 ,它表示一个中心在 ( -4 ,0 ) ,焦点为F′( -10 ,0 ) ,F( 2 ,0 ) ,长轴长是 12 2的椭圆 ,如图所示 .解法 2 :根据椭圆的第二定义知所求动点P的轨迹是一个椭圆 ,其焦点在x轴上 .因为焦点F( 2 ,0 ) ,准线x =8,所以c=2 ,a2c=8,解得a2 …  相似文献   

12.
张荣 《考试》2010,(Z1)
例1直线与两坐标正半轴围成面积过点P(2,1)作直线l分别交x轴,y轴正半轴于A、B两点,求当△OAB面积最小值时直线l的方程:分析:设方程x/a+y/b=1,p代入2/a+1/b=1①(这里a、b为横纵截距)  相似文献   

13.
<正>一、直线方程x=my+n的特征(1)过x轴上一点(n,0);(2)若直线的斜率为k(k≠0),则k=1/m(m≠0);若直线的倾斜角为α(α≠0),则m=1/tanα;若m=0,直线方程为x=n,此时直线的斜率不存在;(3)应用范围:能表示与x轴垂直的直线(即斜率不存在),不能表示与x轴平行的直线(即斜率为0).二、直线方程y=k(x-x_0)+y_0的特征  相似文献   

14.
基本问题 :已知圆的方程为 x2 + y2 =r2 ,求过圆上一点 P0 (x0 ,y0 )的圆的切线方程。解法 1:若 y0 ≠ 0 ,则所求切线斜率存在 ,设所求方程为 y- y0 =k(x- x0 ) ,代入 x2 + y2 =r2 得 :(1+ k2 ) x2 + (2 ky0 - 2 k2 x0 ) x+ y0 2 + k2 x0 2 -2 kx0 y0 - r2 =0 ,由判别式△ =0得 :(r2 - x0 2 ) k2 + 2 x0 y0 k+ r2 -y0 2 =0。又 x0 2 + y0 2 =r2 ,∴ y0 2 k0 2 + 2 x0 y0 k+ x0 2 =0。即 (y0 k+ x0 ) 2 =0 ,解得 k=- x0 / y0 。故所求切线方程为 y- y0 =- x0 / y0 (x- x0 ) ,即 x0 x+ y0 y=x0 2 + y0 2 亦即 x0 x+ y0 y=r2 。 1当 y0 =0时 ,…  相似文献   

15.
△的妙用     
我们知道△=b2-4ac是一元二次方程ax2+bc+c=0(a≠0)的根的判别式,△>0时,方程有两个不相等的实数根,△=0时,方程有两个相等的实数根,△<0时,方程没有实数根。除此之外,△还另有妙用。 设抛物线y=ax2+bc+c(a≠0)与x轴交于A(x1、0),B(x2、0)两点,则x1、x2是一元二次方程ax2+bc+c=0(a≠0)的两个不相等的实数根,此时△>0,并设A、B两点间的距离为d那么,  相似文献   

16.
导数de应用     
一、曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是f'(x0).例1垂直于直线2x-6y+1=0且与曲线y=x3-3x2-1相切的直线方程是.解由题意可知,所求直线的斜率k=-3.而由y'=3x2-6x=-3,解得x=1.∴切点坐标为(1,-3).∴所求的切线方程是3x+y=0.例2对于函数y=x3+ax2+bx+c,试确定函数的图像有与x轴平行的切线的条件,并确定该函数在R上是增函数的条件.解若函数的图像有与x轴平行的切线,则方程y'=0有实数解;若该函数在R上是增函数,则y'>0.∵y'=3x2+2ax+b,得驻=4a2-12b≥0,即a2≥3b,∴函数y=x3+ax2+bx+c的图像有与x轴平行的切线的条件是a2≥3b.又若y'=3x2+2ax…  相似文献   

17.
我们知道平面上二次曲线的方程可写为:22a11x+2a12xy+a22y+2a13x+2a23y+a33=0.我们常用的分类方法是将它们经过平移、旋转,化为标准方程:22b11x+b22y+b33=0(b11b22≠0)或b22y2+2b13x=0(b22b13≠0)或b22y2+b33=0(b22≠0).从而,得出,共有九类形式:椭圆、虚椭圆、点椭圆、双曲线、两条相交曲线、抛物线、两条平行直线、两条虚平行直线、两条重合直线.其中,我们称椭圆、双曲、抛物线为非退化的实二次曲线.现在,本文用另一种分类方法,研究这三种曲线的性质.首先,我们定义曲线的相等:定义1若两条曲线经过平移、旋转、反射后重合,则称这两条曲线相…  相似文献   

18.
<正>1另类方法事实1若抛物线y=ax2+bx+c(a≠0)经过A、B、C三点,则(1)A、B、C三点不在同一直线上;(2)直线AB、AC、BC均不与x轴垂直.事实2平面直角坐标系中,A、B、C三点不在同一直线上,且直线AB、AC、BC均不与x轴垂直,则存在着唯一一条抛物线y=ax2+bx+c(a≠0),其图象过A、B、C三点.事实3如图1,平面直角坐标系中,A、B两点是等高点(即两点的纵坐标相等),抛物线y=ax2+bx+c(a≠0)过A、B两点.若抛物线开口向上,则抛物线经过图中的1区、5区、3区,不经过图中的4区、2区、6区;若抛物线开口向下,则抛物线经过图中的4区、2  相似文献   

19.
题如图1,过抛物线y2=2px(p>0)焦点F的一条直线和抛物线相交,交点的纵坐标为y1、y2.求证y1y2=-p2.证法1由已知,抛物线焦点F(2p,0),设过点F的直线与抛物线交于点A(x1,y1),B(x2,y2).若AB⊥x轴,则y1=p,y2=-p.所以y1y2=-p2.若AB与x轴不垂直,设直线AB的方程为y=k(x-2p),与y2=2px联立,得y2-2kpy-p2=0,因为y1、y2是方程的2根,所以y1y2=-p2.证法2因直线AB过定点F且与x轴不平行,所以设直线AB的方程为x=my 2p.代入y2=2px得y2-2pmy-p2=0,因为y1、y2是方程的2根,所以y1y2=-p2.法1是常规解法,法2设出直线方程,避免了讨论直线斜率的存在性,是一种很…  相似文献   

20.
《考试》2007,(Z1)
简单的线性规划问题是高中数学新课标教材的重点内容,也是近年高考命题的热点.线性规划问题的常规解法是“截距法”,即利用线性目标函数z=ax by(b≠0)的几何意义:“z/b是直线y=-(a/b)x (z/b)在y轴上的截距”来求解.而对于有些线性规划问题.也可以运用新视角探究其解法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号