首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 539 毫秒
1.
对于二次函数y=ax~2 bx c(a≠0),可通过配方法将其化为顶点式y=a(x b/2a)~2 4ac-b~2/4a(a≠0),可知:  相似文献   

2.
1.配方法 对于二次函数y=ax~2+bx+c,通过配方可得: y=a(x+(b/2a))~2+((4ac-b~2)/4a)。 由二次函数的极值性可知: 若a<0,则y有极大值,当x=-b/2a时,y_(max)=4ac-b~2/4a;若a>0,则y有极小值,当x=-b/2a时,y_(min)=4ac-b~2/4a。  相似文献   

3.
近几年的中考数学题中,有一类与抛物线有关的三角形面积的试题,这类题沟通了代数、几何等方面的数学知识,综合性强,知识覆盖面宽,且具有一定难度,本文举例谈这类试题的解法. 如图,是二次函数y b、。=ax~2+bx+c=a(x+b/2a)~2+4ac-b~2/4a(a≠0)的图象,抛物线的顶点C的坐标为(-b/2a,4ac-b~2/4a),与y轴的交点D的坐标为(0,C),当其判别式△=b~2-4ac≠0时,抛物线与x轴有两个交点A(x_1,0)、B(x_2,0),  相似文献   

4.
利用平面直角坐标系可能直观看出二次函数与一元二次方程的紧密联系,一元二次方程ax~2 bx c=0(a≠0)的根就是二次函数y=ax~2 bx c(a≠0)的图象与x轴交点的横坐标,而二次函数的图象与x轴有无公共点又由判别式b~2-4ac来决定。因此,在解决有关函数的问题时,常常要用到一元二次方程的有关知识。下面例举方程知识在二次函数中的应用。 例1 二次函数y=ax~2 bx c(a≠0)在x=-1时有最小值-4,它的图象与x轴交点的横坐标分别为x_1、x_2,且x_1~2 x_2~2=10。求此二次函数的解析式。 解:由题意可知,抛物线的顶点坐标为(-1,-4),故设其解析式为y=a(x十1)~2-4(a≠0)。  相似文献   

5.
二次函数的一般式:y=ax2+bx+c(a≠0) 顶点式:.y=a(x+b/2a)2+4ac-b2/4a=a(x+m)2+k(m=b/2a,k=4ac-b2/4a). 因式分解式:y=ax2+bx+c(x-a)(x  相似文献   

6.
二次函数y=ax~2 bx c(a≠0)有如下性质:当a>0时,在对称轴x=-(b/2a)的左侧y随着x的增大而减小;在对称轴的右侧y随着x的增大而增大;当x=-(b/2a)时函数y有最小值((4ac-b~2)/4a).当a<0时,在对称轴的左侧y随着x的增大而增大;在对称轴的右侧y随着x的增大而减小;当x=-(b/2a)时函数y有最大值((4ac-b~2)/4a).利用二次函数的这一性质及图象求最大值、最小值是中学数学中一个  相似文献   

7.
思考步骤(1)把y=ax2看成y=a(x+0)2+0,从中可直观地看出此函数的对称轴为直线x=0(即y轴),y最值=0.(2)把给出的二次函数y=ax2+bx+c通过配方变成y=[a(x+b/(2a))~2]+(4ac-b~2)/(4a),然后找出对称轴方程为x=-b/2a,y最值=(4ac-b~2)/4a.  相似文献   

8.
众所周知,抛物线y=ax~2 bx c(a≠0)与x轴两交点(x_l,0)、(x_2,0)间的距离为 d=|x_l-x_2| =((x_l x_2)~2-4x_lx_2)~(1/2) (1) =(b~2-4ac)~(1/2)/|a|。 还有一个不常使用的公式就是d=2(-k/a)~(1/2)。其中,k是指抛物线的顶点式y=a(x-h)~2 k(a≠0)中的k,k=(4ac-b~2)/4a。推导过程如下:  相似文献   

9.
本文主要是总结一下现行统编教材中涉及到的最值问题的求法,以及在应用这些方法时要注意的问题。一、一元二次函数的最值 1.y=ax~2 bx c(a≠0,x∈R)当x=-b/2a时,y(最值)=(4ac-b~2)/4a 2.y=ax~2 bx c(a≠O,x∈[α,β])(1)-b/2a∈[α,β]时,y_(max)=max{f(-b/2a),f(α),f(β)}  相似文献   

10.
最值问题是初中数学的一个重要内容,也是各种考试命题的一个热点。笔者根据自己的教学体会,将初中阶段所涉及的求函数最值问题的题目类型归纳如下。 一、求y=ax~2+bx+c(a≠0)型的最大(小) 值 当a>0时,y最小值=(4ac-b~2)/4a;当a<0时,y最大值=(4ac-b~2)/4a。 例1.求y=-2x+7的最大值. 解 ∵a<0,∴y最大值=(81)/8. 例2.求y=2x~2-3x+4的最小值. 解 ∵a<0,∴y最小值=(23)/8. 二、求隐二次函数的最大(小)值 已知y与x不成二次函数关系,但z与x成二次函数关系,可以先求z的最大(小)值,而后再求y的最大(小)值. 例3.求函数y=1/(2+(x-1)~2)的最大值.  相似文献   

11.
题目二次函数 y=ax~2+bx+c(a≠0)的图象是抛物线,抛物线的顶点是(-1,2),且抛物线还过点(-3,0),那么不等式 ax~2+bx+c>0的解是_____.思路1 由抛物线的顶点(-b/2a,4ac-b~2/4a)等条件,列出关于 a、b、c 的方程组,求出 a、b、c 的值,再解不等式.解法1(公式法)根据抛物线的顶点坐标公式,  相似文献   

12.
利用构造法解题,是较长一段时间来各类数学杂志讨论的热门。笔者认为,这些讨论对于训练思维、培养观察、联想、综合分析能力、提高解题水平,无疑是有益的。本文试图从二次式这一个角度,用构造法探求数学竞赛中有关问题,供同行们参考。二次式通常指二次方程、二次函数及二次不等式等,其主要性质有: Ⅰ.若实系数一元二次方程ax~2+bx+c=0(a≠0)有实数解,则△=b~2-4ac≥0,x_1+x_2=-(b/a),x_1·x_2=c/a,反之变然, Ⅱ.二次函数y=ax~2+bx+c(a≠0),  相似文献   

13.
一元二次方程ax~2+bx+c=0和二次函数y=ax~2+bx+c的关系密不可分。在y=ax~2+bx+c中,当y=0时,就变成了ax~2+bx+c=0。而一元二次方程ax~2+bx+c=0的两根x_1,x_2,就是二次函数y=ax~2+bx+c的图象与x轴交点的横坐标。因此,根与系数的关系不但可以用于方程这中,也常用于二次函数之中。 一 求待定系数的值 例1 抛物线y=x~2-(2m-1)x-2m与x轴的  相似文献   

14.
二次函数y=ax~2+bx+c(a≠0),当函数值y=0时,ax~2+bx+c=0就是一个一元二次方程.换句话说,一元二次方程的根即是二次函数.y=ax~2十bx+c的函数值为零时相应的自变量的值.因此,我们可以这样求解一元二次方程ax~2+bx+c=0(a≠0):  相似文献   

15.
一、配方法函数y=f(x)=ax~2+bx+c(a■0),配方后有:y=a(x+b/(2a))+(4ac-b~2)/(4a),,由此,若a>0,当x=-(b/(2a))时,y_(min)=(4ac-b~2)/(4a);若a<0,当x=-(b/(2a))时,y_(max)=(4ac-b~2)/(4a).  相似文献   

16.
二次函数 y=ax~2 bx十c(a≠0),当判别式△=b~2-4ac>0时,设抛物线与x轴的两支点为A(x_1,0),B(x_2,0),则 AB=│x_2-x_1│ △~(1/2)│a│. 若△ABC为内接于抛物线中的三角形,设C点坐标为(x,y),易得 S_(△ABC)=1/2AB·│y│=│y│△~(1/2)/2│a│(1) 特别地:  相似文献   

17.
二次函数y =ax2 bx c(a≠0 )的顶点式y =a(x b2a) 2 -Δ4a(Δ=b2 -4ac)较为优越,因为顶点式能够体现出二次函数y =ax2 bx c(a≠0 )图象的特征:( 1 )开口方向(由a确定:a >0 ,开口向上;a<0 ,开口向下) ;( 2 )对称轴方程(x b2a=0 ) ;( 3 )顶点位置,即最高点或最低点的位置(点的横坐标x =-b2a,点的纵坐标y =-Δ4a) .由顶点式也能确定出二次函数y =ax2 bx c(a≠0 )的最值(当a >0时有最小值y =-Δ4a;当a <0时有最大值y =-Δ4a) .如果已知二次函数的对称轴,或顶点位置,或最值,采用顶点式y =a(x h) 2 k确定二次函数的解析式较简捷.( 1 )…  相似文献   

18.
作二次函数y=ax~2 bx c(a≠0)的略图是初中学生应掌握的基本技能。怎样才能比较正确,迅速地作出二次函数的略图呢?我是这样教学生的。 因为二次函数y=ax~2 bx c(a≠0)的图象是以直线x=b/(2a)为对称轴的抛物线。  相似文献   

19.
我们在课堂教学中,如果注意对某些典型题目进行一题多解的讲授和训练,不仅可以提高课堂教学的功效,同时也可以培养学生发散性思维的能力。 题目:二次函数y=ax~2 bx c(a≠0)在x=-1时有最小值-4,它的图象与x轴交点的横坐标分别为x_1、x_2,且(x_1)~c (x_2)~2=10。求函数解析式。 解法1:设x_1、x_2是方程ax~2 bx c=0(a≠0)的解。  相似文献   

20.
函数的值域是由其对应法则和定义域共同决定的.函数值域依解析式的特点分(1)常见函数值域;(2)简单的复合函数的值域;(3)由常见函数作某些"运算"而得函数的值域.一、直接法利用常见函数的值域来求(1)一次函数y=ax+b(a≠0)的定义域为R,值域为R(2)反比例函数y=k/x(k≠0)的定义域为{x|x≠0},值域为{y|y≠0};(3)二次函f(x)=ax~2+bx+c(a≠0)的定义域为R,当a>0时,值域为{y|y≥4ac-b~2/4a};  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号