首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study attempts to identify the factors which affect teacher's reluctance to teach science, then explains an approach to help teachers teach science in a worthwhile manner over the school year while monitoring any changes in their confidence and competence. It was found that the condidence and competence of the teachers improved during the year such that they were able to teach successful science lessons on a regular basis. Specializations: primary science and technology education, curriculum development and implementation, teacher education. Specializations: primary science curriculum, early childhood education, gender and science. Specializations: primary science and technology education, issues related to girls in science and technology.  相似文献   

2.
The premise that underlies the pre-service science teacher education program at Monash University is the need to focus on the nature of learning in ways that encourage student-teachers to reconsider their conceptions of learning and how this relates to their view of teaching. The purpose of teaching portfolios is to act as a prompt for student-teachers to reconsider these conceptions and as a way of helping them to better articulate their professional knowledge. The Science (Stream 3) student teachers construct a portfolio of teaching strategies, episodes, ideas, etc. that demonstrate how they see their role as science teachers. The portfolio is ungraded, openended and organised as a dynamic assessment task, not just a static end product. This paper reports on student-teachers' understanding of, and approach to portfolios as they come to understand its purpose and value. Specializations: chemistry and science education, technology and industry links with science curriculum Specializations: science education, reflection, curriculum and evaluation  相似文献   

3.
This study employs narrative methods to give a holistic view of the experiences of five mature age preservice teachers in a semester unit of science education. The unit was designed to help teachers examine and make explicit their ideas about science and science teaching and consider ways in which they might put those ideas into practice. The pivotal theme, around which the teachers' experiences could be organised, was found to be learning science. The preservice teachers expressed a need for a supportive learning environment in which concepts were built gradually and introduced using concrete examples. Previous science experience was found to be a major influence on the attitudes the participants brought to the present course. A lack of previous experience or negative past experiences were a major cause of anxiety. Gender was also important as it had limited the science experiences available to some participants in the past and continued to influence the way they participated in classes during the semester. Specializations: primary science, science teacher education, primary school field experience. Specializations: formation of teachers' knowledge, leadership, teacher change, school reform.  相似文献   

4.
In 1990, a large proportion of third year primary trainee teachers at Victoria College had observed or taught very few or no science lessons during the first two years of their course. The students felt that a lack of content knowledge, a crowded school curriculum, and problems associated with managing resources and equipment, were the main factors contributing to the low level of science being taught in schools. By the end of their third year significantly more students had taught science than after the second year. There was also a change in approach to teaching science with more practical activities being included than previously. The science method unit taught to the students in the third year of their course contributed to this increase. The students considered the hands-on activities in class to have been the most effective aspect of the unit in their preparation for the teaching of primary science. Specializations: children's learning in science, primary teacher education. Specializations: student understanding of biology, evaluation of formal and informal educational settings. Specializations: gender, science and technology, environmental education. Specializations: children's learning in science, language and science.  相似文献   

5.
A study of primary teacher trainees' perceptions and attitudes to science in 1990, has been useful in designing a semester unit aimed at increasing the confidence and interest of first year students at Victoria College. This paper outlines the background survey and discusses some, of the results and how they were used to develop the Professional Readiness Study-Understanding Science. This unit attempts to change attitudes by focussing on metacognition and encourages students to understand and control their own learning. Discussion involves teaching and learning strategies and alternative assessment approaches including the student's journal-the Personal Record. Specializations: technology for learning, health education. Specializations student understanding of biology, particularly genetics, evaluation. Specializations: children's learning in science, language in science.  相似文献   

6.
This paper describes an ongoing process of participatory curriculum development. It outlines some of the tensions which need to be explored in science curriculum development: debates about the nature of science, of society, of school science content and of learning theories. The process whereby action can arise from this debate is also explored. An example will be outlined of a network of science curriculum action which has developed from the work of a range of science education projects in Natal, South Africa. Specializations: science curriculum development from primary to tertiary level. Specializations: inservice primary science teacher development. Specializations: inservice teacher development, biology education. Specializations: environmental education, teacher development. Specializations: environmental education, teacher development.  相似文献   

7.
A study, originally don in Australia in 1983, was replicated in an urban-suburb in the Unitd States. The Australian project vivolved matched pairs of year-fiv teachers in one of two workshops. One workshop taught the skills of teaching electricity, while the other one discussed issues in gender equity in science education (active participation of both girls and boys, comparble student-teacher interactions, and research findings concerning equity). The U.S. study provided three types of workshops (skills, equity and skills, and equity) for comparable groups of fourth and fifth grade teachers. All teachers and their students were subsequently obseved during lessons involving an electricity unit, queried both students and teachers concerning the appropriateness of different fields of science for boys and girls and their interest and aptitudes in doing various types of science. Results from both studies suggest that gender differences in student attitudes toward science may be amellorated by specific types of teacher workshop. Specializations: Gender research, science teacher education, science education national policy. Specializations: Elementary and middle school science education, classroom research. Specializations: Secondary science education, data analysis.  相似文献   

8.
What is written in reports to parents can provide insight into the perceptions of teachers of the various areas of the primary school curriculum. This paper reports the first stage of a research project focussing on reports as a guide to teachers' views of the relative importance of, and desired student outcomes in, key areas of the curriculum. Teacher comments in the end-of-the-year reports in one primary school were analysed. Specializations: science education, teacher education. Specializations: science education, teacher education.  相似文献   

9.
A study of students from a primary school and its local secondary school was conducted to investigate students' relative interests in geology and biology during the years prior to Year 10. Students from Years 1, 3, 5, 7 and 9 were interviewed, using an innovative interview technique, and results show that interest in both subjects appears to be fairly evenly distributed throughout all years. This paper reports on the study conducted and illustrates the success of the interview technique developed to accommodate all students, especially those from younger year levels. Specializations: science teacher education, biology teacher education. Specializations: economic geology, mineralogy, geological education. Specializations: primary science education.  相似文献   

10.
Unattended science and technology exhibits of both static and operational types have been an integral part of museum displays for many years. More recently interactive exhibits in which observers are encouraged to become part of the system of exhibits have become more common. A study was commenced to explore the impact and potential of low cost, unattended, interactive exhibitsset up singly in a normal school classroom without the distractions of a multiplicity of activities as is common in ‘science museums’. Three small groups of Grade 5/6 primary school children interacted with a ‘Falling Towers’ exhibit and their voluntary activities were recorded on videotape for later analysis. Children appeared to state the results of their activity in ways consistent with their expectations rather than with their most recent experience with the exhibit. The responses of girls, boys and mixed groups are reported. Specializations: primary mathematics and science education, teaching strategies. Specializations: science education, students' understandings of phenomena in science.  相似文献   

11.
Conclusion This study suggests that most students entering science or science education units in preservice primary teacher education courses have a positive attitude to the teaching/learning of primary science and see value in all domains of science for children at this stage. This was an unexpected finding. It was of concern however, that their interest in physical science topics was so low. This may be due to previous specific experiences in secondary science. Science and science education units should build on the positive attitudes of students and could develop physical science ideas through their significance in environmental and social problems. Specializations: science education, teacher education in science. Specializations: science education policy and practice, teacher education, school effectiveness.  相似文献   

12.
Post-primary science teachers in Victoria were asked to express views about primary science curriculum design and implementation. They were also asked about the value of continuity between primary and post-primary science education. The post-primary teachers generally had favourable attitudes to primary science education and considered that cooperation would be useful-though it is not common at the moment. However, the data revealed a considerable range of opinion. Post-primary science teachers' views about primary science curriculum are similar to those of primary teachers themselves, but many post-primary teachers would place more emphasis on formal or textbook knowledge. Post-primary teachers see a number of systemic problems in implementing primary science education but their positive perceptions suggest the value of encouraging more structured links. The notion of continuity across the two sectors was well supported. Specializations: science education policy and practice, teacher education, school effectiveness. Specializations: science education, teacher education in science.  相似文献   

13.
This paper reports an empirical study of science education in Australian primary schools. The data show that, while funding is seen as a major determinant of what is taught and how it is taught, teacher-confidence and teacher-knowledge are also important variables. Teachers are most confident with topics drawn from the biological sciences, particularly things to do with plants. With this exception there is no shared body of science education knowledge that could be used to develop a curriculum for science education. There was evidence that most teachers see a need for a hands-on approach to primary science education involving the use of concrete materials. A substantial proportion of teachers agree that some of the problems would be alleviated by having a set course together with simple, prepared kits containing sample learning experiences. Any such materials must make provision for individual teachers to capitalise on critical teaching incidents as they arise and must not undermine the professional pride that teachers have in their work. Specializations: science education, school effectiveness, teacher education Specializations: science education, teacher education in science  相似文献   

14.
This paper describes research into teachers' perceptions of technology education carried out as part of the Learning in Technology Education Project. Thirty primary and secondary school teachers were interviewed. Secondary teachers interpreted technology education in terms of their subject subcultures as did some primary teachers. The primary teachers were also influenced by current initiatives, outside school interests and teaching programs. Specializations: investigations in science, science and technology education. Specializations: learning theories, history and philosophy of science, chemical education.  相似文献   

15.
This paper discusses a preliminary investigation into primary pre-service teachers' pedagogical reasoning skills. Results from this investigation led to the development of a problem-based learning model which focused on improving primary pre-service teachers' pedagogical reasoning skills. The problem-based learning model uses pedagogical reasoning as the basis for creating problem situations for the pre-service teachers to investigate. The paper reports on pre-service teachers' views on the use of the approach to improve their pedagogical reasoning skills. Specializations: science teacher education, learning in science, chemistry education. Specializations: student learning, conceptual change, technology education, curriculum evaluation.  相似文献   

16.
Australia's changing political, social and economic agendas have triggered a critical analysis of school curriculum. Part of this consideration has been concern over the future of science education within the context of senior schooling. Following the completion of the Senior Science Future Directions Project commissioned by the Queensland Board of Senior Secondary School Studies, fifteen issues were identified. These issues, grouped by the needs of the science disciplines, society and the individual student, are discussed with the view of understanding the future design of senior science syllabuses. Specializations: biology teacher education, science curriculum development. Specializations: professional development, curriculum design and evaluation. Specializations: professional development, science teaching.  相似文献   

17.
Over the past two years, Florida State University's Science Education Program and Sabal Palm Elementary have collaborated to develop a PPS. The formation of the Sabal Palm PPS was not based upon a predetermined design nor has one group served as an authority to direct how the PPS ought to operate. The success of this model relies on PPS participants working collaboratively to establish goals and plans for actions to be taken to support teacher-learning. The Sabal Palm PPS continues to evolve as dynamic model for creating a center for teacher and student learning. The purpose of this paper is to discuss our involvement in the formation a PPS and implications for enhancing teacher education programs. Specializations: professional practice school development, teacher research, primary science education Specializations: environmental science, primary science education.  相似文献   

18.
The Sci-Tec project was based on an interactive, non-deficit model of in-service in which the fundamental principle was to value the expertise of all participants, and to encourage them to share that expertise with others. As part of the unfolding of the project, the participants also identified various areas of need as they arose, and these too became elements of the in-service agenda. The model has proved to be robust when applied in a wide range of schools, and with teachers who originally expressed widely varying degrees of confidence and interest in teaching primary science and technology. Specializations: primary science in-service education, curriculum leadership Specializations: in-service and pre-service primary science and technology  相似文献   

19.
This paper relates to a study commissioned by the Department of Employment, Education and Training to evaluate the impact of the Discipline Review of Teacher Education in Mathematics and Science. The major datagathering strategies employed in that study have been to visit every higher education institution in Australia involved in teacher education to interview relevant staff and to seek information by mail from other bodies to whom recommendations of the Review were addressed. This paper reports a supplementary activity, the analysis of citations of the Report of the Discipline Review in the journal of the Australasian Science Education Research Association,Research in Science Education. This research reveals that there has been relatively little critical analysis of the Review, somewhat surprising in the light of its significance for science teacher education. Further the citations in the journal suggest that the Review Report has struck a responsive chord with those involved in the science education of primary school teachers. Its impact on secondary teacher education would appear to be less significant. This difference is explored in the context of professional education. Specializations: science education, teacher education. Specializations: international education, educational measurement, science education.  相似文献   

20.
While constructivism has emerged as a major reform in science education from the last decade, wide-spread adoption of constructivist practices in school laboratories and classrooms is yet to be achieved. If constructivist approaches are to be utilised more widely, teachers will need to accept a more active and constructivist role in their own pedagogical learning. One experienced junior science teacher was able to implement constructivist approaches in her classroom by using a personally constructed metaphor to guide her practice. Specializations: science education, teaching of thinking, professional development. Specializations: constructivism, professional development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号