首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Growth mixture modeling (GMM) is a useful statistical method for longitudinal studies because it includes features of both latent growth modeling (LGM) and finite mixture modeling. This Monte Carlo simulation study explored the impact of ignoring 3 types of time series processes (i.e., AR(1), MA(1), and ARMA(1,1)) in GMM and manipulated the separation of the latent classes, the strength of the time series process, and whether the errors conformed to the time series process in 1 or 2 latent classes. The results showed that omitting time series processes resulted in more serious bias in parameter estimation as the distance between classes increased. However, when the class distances were small, ignoring time series processes contributed to the selection of the correct number of classes. When the GMM models correctly specified the time series process, only models with an AR(1) time series process produced unbiased parameter estimates in most conditions. It was also found that among design factors manipulated, the distance between classes prominently affected the identification of the number of classes and parameter estimation.  相似文献   

2.
Mixture Rasch models have been used to study a number of psychometric issues such as goodness of fit, response strategy differences, strategy shifts, and multidimensionality. Although these models offer the potential for improving understanding of the latent variables being measured, under some conditions overextraction of latent classes may occur, potentially leading to misinterpretation of results. In this study, a mixture Rasch model was applied to data from a statewide test that was initially calibrated to conform to a 3‐parameter logistic (3PL) model. Results suggested how latent classes could be explained and also suggested that these latent classes might be due to applying a mixture Rasch model to 3PL data. To support this latter conjecture, a simulation study was presented to demonstrate how data generated to fit a one‐class 2‐parameter logistic (2PL) model required more than one class when fit with a mixture Rasch model.  相似文献   

3.
In longitudinal design, investigating interindividual differences of intraindividual changes enables researchers to better understand the potential variety of development and growth. Although latent growth curve mixture models have been widely used, unstructured finite mixture models (uFMMs) are also useful as a preliminary tool and are expected to be more robust in identifying classes under the influence of possible model misspecifications, which are very common in actual practice. In this study, large-scale simulations were performed in which various normal uFMMs and nonnormal uFMMs were fit to evaluate their utility and the performance of each model selection procedure for estimating the number of classes in longitudinal designs. Results show that normal uFMMs assuming invariance of variance–covariance structures among classes perform better on average. Among model selection procedures, the Calinski–Harabasz statistic, which has a nonparametric nature, performed better on average than information criteria, including the Bayesian information criterion.  相似文献   

4.
Stage-sequential (or multiphase) growth mixture models are useful for delineating potentially different growth processes across multiple phases over time and for determining whether latent subgroups exist within a population. These models are increasingly important as social behavioral scientists are interested in better understanding change processes across distinctively different phases, such as before and after an intervention. One of the less understood issues related to the use of growth mixture models is how to decide on the optimal number of latent classes. The performance of several traditionally used information criteria for determining the number of classes is examined through a Monte Carlo simulation study in single- and multiphase growth mixture models. For thorough examination, the simulation was carried out in 2 perspectives: the models and the factors. The simulation in terms of the models was carried out to see the overall performance of the information criteria within and across the models, whereas the simulation in terms of the factors was carried out to see the effect of each simulation factor on the performance of the information criteria holding the other factors constant. The findings not only support that sample size adjusted Bayesian Information Criterion would be a good choice under more realistic conditions, such as low class separation, smaller sample size, or missing data, but also increase understanding of the performance of information criteria in single- and multiphase growth mixture models.  相似文献   

5.
The purpose of this study is to provide guidance on a process for including latent class predictors in regression mixture models. We first examine the performance of current practice for using the 1-step and 3-step approaches where the direct covariate effect on the outcome is omitted. None of the approaches show adequate estimates of model parameters. Given that Step 1 of the 3-step approach shows adequate results in class enumeration, we suggest using an alternative approach: (a) decide the number of latent classes without predictors of latent classes, and (b) bring the latent class predictors into the model with the inclusion of hypothesized direct covariate effects. Our simulations show that this approach leads to good estimates for all model parameters. The proposed approach is demonstrated by using empirical data to examine the differential effects of family resources on students’ academic achievement outcome. Implications of the study are discussed.  相似文献   

6.
This study investigates the effect of multidimensionality on extraction of latent classes in mixture Rasch models. In this study, two‐dimensional data were generated under varying conditions. The two‐dimensional data sets were analyzed with one‐ to five‐class mixture Rasch models. Results of the simulation study indicate the mixture Rasch model tended to extract more latent classes than the number of dimensions simulated, particularly when the multidimensional structure of the data was more complex. In addition, the number of extracted latent classes decreased as the dimensions were more highly correlated regardless of multidimensional structure. An analysis of the empirical multidimensional data also shows that the number of latent classes extracted by the mixture Rasch model is larger than the number of dimensions measured by the test.  相似文献   

7.
The presence of nuisance dimensionality is a potential threat to the accuracy of results for tests calibrated using a measurement model such as a factor analytic model or an item response theory model. This article describes a mixture group bifactor model to account for the nuisance dimensionality due to a testlet structure as well as the dimensionality due to differences in patterns of responses. The model can be used for testing whether or not an item functions differently across latent groups in addition to investigating the differential effect of local dependency among items within a testlet. An example is presented comparing test speededness results from a conventional factor mixture model, which ignores the testlet structure, with results from the mixture group bifactor model. Results suggested the 2 models treated the data somewhat differently. Analysis of the item response patterns indicated that the 2-class mixture bifactor model tended to categorize omissions as indicating speededness. With the mixture group bifactor model, more local dependency was present in the speeded than in the nonspeeded class. Evidence from a simulation study indicated the Bayesian estimation method used in this study for the mixture group bifactor model can successfully recover generated model parameters for 1- to 3-group models for tests containing testlets.  相似文献   

8.
Abstract

Factor mixture models are designed for the analysis of multivariate data obtained from a population consisting of distinct latent classes. A common factor model is assumed to hold within each of the latent classes. Factor mixture modeling involves obtaining estimates of the model parameters, and may also be used to assign subjects to their most likely latent class. This simulation study investigates aspects of model performance such as parameter coverage and correct class membership assignment and focuses on covariate effects, model size, and class-specific versus class-invariant parameters. When fitting true models, parameter coverage is good for most parameters even for the smallest class separation investigated in this study (0.5 SD between 2 classes). The same holds for convergence rates. Correct class assignment is unsatisfactory for the small class separation without covariates, but improves dramatically with increasing separation, covariate effects, or both. Model performance is not influenced by the differences in model size investigated here. Class-specific parameters may improve some aspects of model performance but negatively affect other aspects.  相似文献   

9.
Researchers have devoted some time and effort to developing methods for fitting nonlinear relationships among latent variables. In particular, most of these have focused on correctly modeling interactions between 2 exogenous latent variables, and quadratic relationships between exogenous and endogenous variables. All of these approaches require prespecification of the nonlinearity by the researcher, and are limited to fairly simple nonlinear relationships. Other work has been done using mixture structural equation models (SEMM) in an attempt to fit more complex nonlinear relationships. This study expands on this earlier work by introducing the 2-stage generalized additive model (2SGAM) approach for fitting regression splines in the context of structural equation models. The model is first described and then investigated through the use of simulated data, in which it was compared with the SEMM approach. Results demonstrate that the 2SGAM is an effective tool for fitting a variety of nonlinear relationships between latent variables, and can be easily and accurately extended to models including multiple latent variables. Implications of these results are discussed.  相似文献   

10.
Simulation studies involving mixture models inevitably aggregate parameter estimates and other output across numerous replications. A primary issue that arises in these methodological investigations is label switching. The current study compares several label switching corrections that are commonly used when dealing with mixture models. A growth mixture model is used in this simulation study, and the design crosses three manipulated variables—number of latent classes, latent class probabilities, and class separation, yielding a total of 18 conditions. Within each of these conditions, the accuracy of a priori identifiability constraints, a priori training of the algorithm, and four post hoc algorithms developed by Tueller et al.; Cho; Stephens; and Rodriguez and Walker are tested to determine their classification accuracy. Findings reveal that, of all a priori methods, training of the algorithm leads to the most accurate classification under all conditions. In a case where an a priori algorithm is not selected, Rodriguez and Walker’s algorithm is an excellent choice if interested specifically in aggregating class output without consideration as to whether the classes are accurately ordered. Using any of the post hoc algorithms tested yields improvement over baseline accuracy and is most effective under two-class models when class separation is high. This study found that if the class constraint algorithm was used a priori, it should be combined with a post hoc algorithm for accurate classification.  相似文献   

11.
In this simulation study, we explored the effect of introducing covariates to a growth mixture model when covariates were also generated by a mixture model. We varied the association between the latent classes underlying the growth trajectories and the covariates, the degree of separation between the latent classes underlying the covariates, the number of covariates included, and amount of missing data in the growth data. We found that adding covariates to the growth mixture model generally hurt class recovery except where the latent classes underlying the growth trajectories and the covariates were the same or very strongly associated, and there was a large degree of separation between the classes underlying the covariates. We found that when covariates were introduced, entropy might no longer be an accurate indicator of the distinctiveness of the growth trajectory classes.  相似文献   

12.
The purpose of this article is to demonstrate how recent methodological developments in the analysis of individual growth can inform important problems in education policy. Specifically, this article focuses on a method referred to as growth mixture modeling. Growth mixture modeling is a relatively new procedure for the analysis of longitudinal data that relaxes many of the assumptions associated with conventional growth curve modeling. In particular, growth mixture modeling tests for the existence of unique growth trajectory classes through a combination of latent class analysis and standard growth curve modeling. Antecedent predictors of the latent classes can be incorporated as well as relations from the latent classes to specific outcomes. This article applies growth mixture modeling to data from the Early Childhood Longitudinal Study-Kindergarten class of 1998-1999. The specific policy question posed in this article focuses on the estimation of latent growth trajectory classes in reading proficiency and the effects of full-day or part-day kindergarten programs on growth within reading trajectory classes. Results identify a 3-class solution corresponding to slow-developing, normal-developing, and fast-developing reading growth in children. The results further show that full-day kindergarten attendance benefits children in the slow-reading development class relative to the normal and fast-reading development class, but the effect is lessened when holding constant socioeconomic status and age of entry into kindergarten. The implications of the method for quantitative education policy analysis are also discussed.  相似文献   

13.
Recent developments in finite mixture modeling allow for the identification of different developmental processes in distinct but unobserved subgroups within a population. The new approach, described within the general growth mixture modeling framework (Muthen, 2001, in press), extends conventional random coefficient growth models to incorporate a categorical latent trajectory variable representing latent classes or mixtures (i.e., the subgroups in the population whose membership must be inferred from the data). This article provides a didactic example of this new methodology with adolescent alcohol use data, which is shown to consist of a mixture of distinct subgroups, defined by unique growth trajectories and differing predictors and sequelae. The method is discussed as a useful tool for mapping hypotheses of development onto appropriate statistical models.  相似文献   

14.
Growth mixture models combine latent growth curve models and finite mixture models to examine the existence of latent classes that follow distinct developmental patterns. Analyses based on these models are becoming quite common in social and behavioral science research because of recent advances in computing, the availability of specialized statistical programs, and the ease of programming. In this article, we show how mixture models can be fit to examine the presence of multiple latent classes by algorithmically grouping or clustering individuals who follow the same estimated growth trajectory based on an evaluation of individual case residuals. The approach is illustrated using empirical longitudinal data along with an easy to use computerized implementation.  相似文献   

15.
Change over time often takes on a nonlinear form. Furthermore, change patterns can be characterized by heterogeneity due to unobserved subpopulations. Nonlinear mixed-effects mixture models provide one way of addressing both of these issues. This study attempts to extend these models to accommodate time-unstructured data. We develop methods to fit these models in both the structural equation modeling framework as well as the Bayesian framework and evaluate their performance. Simulations show that the success of these methods is driven by the separation between latent classes. When classes are well separated, a sample of 200 is sufficient. Otherwise, a sample of 1,000 or more is required before parameters can be accurately recovered. Ignoring individually varying measurement occasions can also lead to substantial bias, particularly in the random-effects parameters. Finally, we demonstrate the application of these techniques to a data set involving the development of reading ability in children.  相似文献   

16.
This article examines the problem of specification error in 2 models for categorical latent variables; the latent class model and the latent Markov model. Specification error in the latent class model focuses on the impact of incorrectly specifying the number of latent classes of the categorical latent variable on measures of model adequacy as well as sample reallocation to latent classes. The results show that the clarity of remaining latent classes, as measured by the entropy statistic depends on the number of observations in the omitted latent class—but this statistic is not reliable. Specification error in the latent Markov model focuses on the transition probabilities when a longitudinal Guttman process is incorrectly specified. The findings show that specifying a longitudinal Guttman process that is not true in the population impacts other transition probabilities through the covariance matrix of the logit parameters used to calculate those probabilities.  相似文献   

17.
The factor mixture model (FMM) uses a hybrid of both categorical and continuous latent variables. The FMM is a good model for the underlying structure of psychopathology because the use of both categorical and continuous latent variables allows the structure to be simultaneously categorical and dimensional. This is useful because both diagnostic class membership and the range of severity within and across diagnostic classes can be modeled concurrently. Although the conceptualization of the FMM has been explained in the literature, the use of the FMM is still not prevalent. One reason is that there is little research about how such models should be applied in practice and, once a well-fitting model is obtained, how it should be interpreted. In this article, the FMM is explored by studying a real data example on conduct disorder. By exploring this example, this article aims to explain the different formulations of the FMM, the various steps in building a FMM, and how to decide between an FMM and alternative models.  相似文献   

18.
We propose a maximum likelihood framework for estimating finite mixtures of multivariate regression and simultaneous equation models with multiple endogenous variables. The proposed “semi‐parametric” approach posits that the sample of endogenous observations arises from a finite mixture of components (or latent‐classes) of unknown proportions with multiple structural relations implied by the specified model for each latent‐class. We devise an Expectation‐Maximization algorithm in a maximum likelihood framework to simultaneously estimate the class proportions, the class‐specific structural parameters, and posterior probabilities of membership of each observation into each latent‐class. The appropriate number of classes can be chosen using various information‐theoretic heuristics. A data set entailing cross‐sectional observations for a diverse sample of businesses is used to illustrate the proposed approach.  相似文献   

19.
The purpose of this study was to investigate whether simulated differential motivation between the stakes for operational tests and anchor items produces an invalid linking result if the Rasch model is used to link the operational tests. This was done for an external anchor design and a variation of a pretest design. The study also investigated whether a constrained mixture Rasch model could identify latent classes in such a way that one latent class represented high‐stakes responding while the other represented low‐stakes responding. The results indicated that for an external anchor design, the Rasch linking result was only biased when the motivation level differed between the subpopulations to which the anchor items were administered. However, the mixture Rasch model did not identify the classes representing low‐stakes and high‐stakes responding. When a pretest design was used to link the operational tests by means of a Rasch model, the linking result was found to be biased in each condition. Bias increased as percentage of students showing low‐stakes responding to the anchor items increased. The mixture Rasch model only identified the classes representing low‐stakes and high‐stakes responding under a limited number of conditions.  相似文献   

20.
When conducting longitudinal research, the investigation of between-individual differences in patterns of within-individual change can provide important insights. In this article, we use simulation methods to investigate the performance of a model-based exploratory data mining technique—structural equation model trees (SEM trees; Brandmaier, Oertzen, McArdle, & Lindenberger, 2013)—as a tool for detecting population heterogeneity. We use a latent-change score model as a data generation model and manipulate the precision of the information provided by a covariate about the true latent profile as well as other factors, including sample size, under the possible influences of model misspecifications. Simulation results show that, compared with latent growth curve mixture models, SEM trees might be very sensitive to model misspecification in estimating the number of classes. This can be attributed to the lower statistical power in identifying classes, resulting from smaller differences of parameters prescribed by the template model between classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号