首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文[2]作为文[1]的续文,在直线方程(x_0x)/(a~2) (y_0y)/b~2=1的三种几何意义探讨启发下,给出了直线方程(x_0x)/(a~2)-(y_0y)/(b~2)=1的几何意义.本文再给出直线方程y_0y=p(x x_0)的几何意义,以告对此类问题的探讨圆满解决.  相似文献   

2.
学过《平面解析几何》的同学都知道:过椭圆x~2/a~2+y~2/b~2=1上一点P(x_0,y_0)的切线的方程是(x_0x)/a~2+(y_0y)/b~2=1①因(x_0~2)/a~2+(y_0~2)/b~2=1,又可写成(x_0x)/a~2+(y_0y)/b~2=(x_0~2)/a~2=(y_0~2)/b~2②, 一些细心的同学会问:当P(x_0,y_0)点不在椭圆上时,方程①或②的几何意义是什么呢?过椭圆外定点的椭圆的切线能否用方程①或②来表示呢?而少数粗心的同学在解题时没考虑点P的位置,直接套用方程①或②导致错误的情况时有发生。因此,有必要引导学生利用熟知的原理和方法,进行一番较深入的探讨。下面我们给出:  相似文献   

3.
我们知道,过定点P_0(x_0,y_0)的直线l的参数方程的一般形式为: x=x_0+at,y=y_0+bt。(t为参数,a~2+b~2≠0) (1) 这时,如a~2+b~2≠1,则参数t没有明显的几何意义。通过“标准化”,即得到标准形式:  相似文献   

4.
椭圆以某定点为中点的弦并非一定存在,那么,中点弦存在的充要条件是什么?有何应用,本文作下列探讨: 一中点弦方程的一种求法。设椭圆b~2x~2 a~2y~2-a~2b~2=0,(a>0,b>0)…(1) 及定点P_0(x_0,y_0),若以P_0为中点的弦存在,且两端点分别为A(x_1,y_1),B(x_2,y_2) 则:b~2x_1~2 a~2y_1~2-a~2b~2=0 b~2x_2~2 a~2y_2~2-a~2b~2=0 两式相减整理得: (y_1-y_2)/(x_1-x_2)=(x_1 x_2)/(y_1 y_2)·b~2/a~2 =-b~2/a~2·x_0/y_0 (x_1≠x_2) 即k=-(b~2x_0)/(a~2y_0),代入点斜式得中点弦方程:a~2y_0y b~2x_0x=a~2y_0~2 b~2x_0~2……(2) 如果x_1=x_2,那么y_0=0,中点弦方程为x=x_0仍包含在(2)中。  相似文献   

5.
我们熟知,直线的点斜式方程 y-y_1=k(x-x_1)与参数方程x=x_1 tCosα y=y_1 tSinα(其中 tgα=k)对应,而园锥曲线x~2/a~2 y~2/b~2=1,x~2/a~2-y~2/b~2=1和 y~2=2px分别与参数方程 x=aCost y=bsint,x=aSect,y=btgt,和x=2pt~2 y=2pt 对应。在直线的参数方程x=x_1 tCosα y=y_1 tSinα中,参数 t 有简单明确的几何意义——t 是对应的动点 P(x,y)到定点 M(x_1,y_1)的有  相似文献   

6.
我们知道,与椭圆x~2/a~2+y~2/b~2=1相切于(X_0y_0)点的切线方程是x_0x/a~2+y_0y/b~2=1 ①我们把直线y=kx+(m≠O) ②变形为 -ka~2x/m/a~2+b~2/m~y/b~2=1 ③如果直线②与椭圆也相切于(x_0,y_0)点,则①和③表示同一条直线,所以有 x_0=-ka~2/m,y_0=b~2/m (Ⅰ) 用同样的方法,可类似地求出圆x~2+y~2=r~2双曲线x~2/a~2-y~2/b~2=1和抛物线y~2=2px与  相似文献   

7.
对于直线方程:x_0x/a~2+y_0y/b~2=1,文[1]中已证明:它是过平面上任一点p_0(x_0,y_0)(原点除外)的直线与椭圆的两个交点为切点的两切线的交点的轨迹方程,同时还指出了它的两个有趣的性质。本文将继续研究它的另一  相似文献   

8.
平面上的椭圆、双曲线、抛物线的标准方程为x~2/a~2±y~2/b~2=1、y~2=2px。在其曲线上的点(x_0,y_0)处的切线方程可表示为x_0x/a~2±y_0y/b~2=1、y_0y=p(x x_0)的形式。这种形式与原曲线方程有明显的对应关系,便于记忆,并可以推广到平面上高次曲线。为了便于讨论,我们把平面直角坐标系中3次曲线方程的一般形式表示为  相似文献   

9.
常看到一些写给中学生的书和数学杂志上介绍直线的参数方程时称经进点P_0(x_0,y_0),倾角为α的直线的参数方程的标准式是:x=x_o tcosα y=y_o tsinα(t是参数),又将这样的形式x=x_o at y=y_o bt(t是参数,a~2 b~2≠1)叫做一般形式.并介绍将一般形式化为标准形式的方法只须在t的系数上除以(a~2 b~2)~(1/2)构成t的系数的平方和为1.即: (t为参数) (※) 为了叙述方便,我们姑且承认其“一般式”和“标准式”的称呼法. 显然,作者称(※)为标准式是认为该方程中参数t的几何意义是直线上P点和P_0(x_0,y_0)点的有向线段的数量.但我认为方程(※)还不一定是直线参数方程的标准式,其原因如下:  相似文献   

10.
[定理1] 设曲线a:F(x,y)=0关于直线l:Ax+By+C=0的对称曲线是a’,则a’的方程为 F(x-(2A(Ax+By+C))/(A~2+B~2),y-(2B(Ax+By+C))/(A~2+B~2))=0 (1) 证:设a上任一点P(x_1,y_1)关于l的对称点是M(x,y).则PM的中点((x+x_1)/2,(y+y_1)/2)∈l,且PM⊥l.当A≠0且B≠0时,  相似文献   

11.
文[1]定义了椭圆的切准点:椭圆(x~2)/(a~2)+(y~2)/(b~2)=1(a>b>0)上点M(x_0,y_0)(除长轴两顶点)处的切线l交右准线l_2:x=(a~2)/c于P,交左准线l_1:x=-(a~2)/c于Q,则点P,Q为椭圆的切准点.笔者  相似文献   

12.
1方法回顾提炼文[1]中提炼出一种解决"直线与圆锥曲线相交弦"有关问题的行之有效的特殊方法——构造"关于y/x的二次方程".其具体方法如下:若直线l与圆锥曲线C相交于不同两点P(x_1,y_1)和Q(x_2,y_2),当求解与k_(OP)、k_(OQ)相关的问题时,可以设直线l的方程为y =kx 6,当b≠0时,可将其化为(y-kx)/b=1,  相似文献   

13.
一条直线和一条圆锥曲线的位置可以有相交、相切或相离三种情况。下面给出在给定一条直线方程和一条圆锥曲线的方程的条件下,判定它们的位置关系的定理。定理一已知直线l:Ax+By+C=0和椭圆E:x~2/a~2+y~2/b~2=1,若a~2A~2+b~2B~2>C~2则l和E相交;若a~2A~2+b~2B~2=C~2则l和E相切:若 a~2A~2+b~2B~2相似文献   

14.
例1 已知分别过抛物线 y~2=2px 上点 A(x_1,y_1),B(x_2,y_2)的两条切线相交于 P(x′,y′).求证:x′=(y_1y_2)/2p,y′=(y_1 y_2)/2.证明如图1,由文献[1]可知过 A,B 两点的切线方程为:l_1:y_1y=p(x x_1);l_2:y_2y=p(x x_2).又 P 在 l_1,l_2上,有y_1y′=p(x′ x_1); (1)y_2y′=p(x′ x_2). (2)式(1)-式(2)得(y_1-y_2)y′=p(x_1-x_2).又 x_1=y_1~2/2p,x_2=y_2~2/2p,代入上式整理得y′=1/2(y_1 y_2), (3)将式(3)代入式(1)得1/2y_1(y_1 y_2)=px′ py_1~2/2p,由此得 x′=y_1y_2/2p,所以  相似文献   

15.
一阶导数与二次曲线弦中点间存在着一种内在联系,这种联系为解决二次曲线中点弦一类问题开辟了一条较为简捷的路径.本文就以定理形式揭示这种联系并列举应用. 定理:椭圆x~2/a~2 y~2/b~2=1的以斜率为k的一组平行弦中点轨迹方程是x~2/a~2 yy_x~'/b~2=0(※)(|x|≤a,|y|≤b)其中y_x~'就是平行弦的斜率k,它等于直线(※)与椭圆交点处切线的斜率. 证明:设点P(x_0,y_0)是以k为斜率的弦P_1P_2的中点,点P_1(x_1,y_1),P_2(x_2,y_2)  相似文献   

16.
解析几何课本(甲种本)49页中,对点到直线距离公式的推导,分α<90°和α>90°两种情况,分别得α_1=α和α_1=π-α。讨论相当烦琐。但,如果采用下面的推导方法,将简便得多。在直角三角形中,两直角边为a,b,斜边为c,斜边上的高为d。大家熟知有c~2=a~2 b~2。利用面积相等有:a~2b~2=d~2(a~2 b~2),这样就得另一有趣的简单关系:1/d~2=1/a~2 1/b~2。下面就利用这个关系推导点到直线的距离公式: 已知点P(x_0,y_0)和直线l:Ax By C=0, (1)当A≠0,B≠0,且P不在l上时: 这时l不平行于坐标轴。过P分别作平行于y轴,x轴的直线分别与l交于M(x_1,y_1)和N(x_2,y_2)。在所设条件下,PMN  相似文献   

17.
朱明侠 《数学教学通讯》2007,(11):64-64,F0003
文[2]作为文[1]的续文,在直线方程x0x/a^2+y0y/b^2=1的三种几何意义探讨启发下,给出了直线方程x0x/a^2-y0y/b^2=1的几何意义.本文再给出直线方程y0y=p(x+x0)的几何意义,以告对此类问题的探讨圆满解决.  相似文献   

18.
求已知点P(x_0,Y_0)关于直线y=kx m的对称点P'(x,y),通常是解方程组 {1/2(y y_0)=k·1/2(x x_0) m (y-y_0)/(x-x_0)=-(1/k) 但当k=±1时,可直接用对称轴方程y=±x m即x=±y±m代换以求P'点的位置。定理1 若P'(x,y)是点P(x_0,y_0)关于直线y=x m的对称点,则 {x=y_0-m, y=x_0 m。证明比较简单,兹从略。特别地,当m=0时,点p(x_0,y_0)和点p'(y_0,x_0)关于直线y=x对称。推论1 曲线f(x,y)=0关于直线y=x m对称的曲线方程是f(y-m,x m)  相似文献   

19.
定理过双曲线上一点 P 作切线交渐近线于点A、B,则(1)PA=PB;(2)△OAB(O 为双曲线的中心)的面积为定值.证明:不妨设双曲线的方程为 x~2/a~2-y~2/b~2=1(a>0,b>0),渐近线为 y=±(b/a)x,P(x_0,y_0)为双曲线上任一点,则 AB 的方程为 xx_0/a~2-yy_0/b~2=1,与 y=±(b/a)x 联立,  相似文献   

20.
设P_1(x_1,y_1),P_2(x_2,y_2)是坐标平面上的两点,直线L的方程为f(x,y) =ax by C=0,二次曲线G的方程为 F(x,y)=Ax~2 Bxy Cy~2 Dx十Ey十F=0.1 若记直线P_1P_2与直线L的交点为P(x,y),并且P点分所成的比为λ(λ≠-1).则 x=(x_1 λx_2)/(1 λ),y=(y_1 λy_2)/(1 λ).代入方 程f(x,y)=0得:a(x_1 λx_2) b(y_1 λy_2) c(1 λ)=0,即ax_1 by_1 c λ(ax_2 by_2 c)=0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号