首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 885 毫秒
1.
本刊今年第6期《从方程x+1/x=c+1/c的解法谈起》一文中,将初中《代数》课本第三册中的一道练习题“解关于x的方程x+1/x=c+1/c”作了两次推广: 推广一:关于x的方程x+b/x=c+b/c的解为x_1=c,x_2=b/c(c≠0)。 推广二:关于x的方程x~(1/n)+1/(x~(1/n))=c+1/c的解为x_1=c~n,x_2:=1/(c~n)。  相似文献   

2.
设x1、x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根,那么x1=(-b+(b2-4ac))/2a,x2=(-b-(b2-4ac))/2a,x1+x2=-(b/a),x1·x2=c/a,由此,得  相似文献   

3.
一元二次方程ax2+bx+c=0(a≠0),当有一个根是“1”时,根据方程根的定义得a+b+c=0,反之,如果a+b+c=0时,方程的根又分别是什么呢?证明:∵a+b+c=0∴b=-a-c则ax2+bx+c=0变为ax2+(-a-c)x+c=0可分解为(ax-c)(x-1)=0解得:x1=1x2=ac也就是方程ax2+bx+c=0(a≠0)中,当a+b+c=0时,有一个根是1,另一个根是c/a,借这个特殊性质来巧解题。1、巧求一元二次方程的两个根例1解关于x的方程:mx2-(m-n)x-n=0(m≠0)解:∵m-(m-n)-n=0∴x1=1x2=-(mn).2、巧求代数式的值已知:一元二次方程(ab-2b)x2+2(b-a)x+2a-ab=0有两个相等的实数根,求1a+1b的值。解:方程(ab-2b)x2+2…  相似文献   

4.
当a+b+c=0时     
我们知道,一元二次方程ax~2+bx+c=0(a≠0)的实数根,在b~2-4ac≥0时,可由求根公式求得。 现在,我们来探究一个问题,当a+b+c=0时,一元二次方程ax~2+bx+c=0(a≠0)的根有什么特点? 探究 ∵ a+b+c=0,∴b=-(a+c),∴ 原方程可化为ax~2-(a+c)x+c=0,即 (ax~2-ax)-(cx-c)=0. ∴ ax(x-1)-c(x-1)=0. ∴(x-1)(ax-c)=0. ∴ X_1=1,X_2=c/a。  相似文献   

5.
西南师范大学出版社出版的初中数学试验教材(内地版)代版第二册P、136、1(3)题和实验课本高层次代数第2册P、108、3题都是关于x的方程:x 1/x=a 1/a,这个题目非常好。好在它的构造是倒数型、对称型,所以形式简洁美丽,好在它的解也对称、简明、易记,更好在能推广灵活运用也同样有对称美、简洁美。命题一方程:x 1/x=c 1/c(?)x_1=c,x_2=1/c(证略) 如果将未知数x换为x的函数f(x),则有: 命题二方程f(x) 1(f(x))=c 1/c(?)f(x)=c,f(x)=1/c,(其中x为未知数,f(x)为x的函数) 证明:∵f(x)≠0,c≠0。  相似文献   

6.
在实数范围内解无理方程,通常是把方程两边乘方同一次数,化为有理方程来解的,但对于形如 ax~2+bc+c+x(a_1x~2+b_1x+c_1)~(1/2)=0, (1)的无理方程,当c≠0时,若两边平方,一般会化为一个高于二次的整式方程,而这样的整式方程是中学生所不易解出的。本文运用不超过现行中学数学教材中的知识,从解决两个例子并通过对这两个特例的剖析入手,推  相似文献   

7.
如果a≠0,函数可化为 y=m/a+(dx+e)/(ax~2+bc+c)。因而只考虑分式函数y=(dx+e)/(ax~2+bx+c)就行了。 1.b~2-4ac<0。此时对任何实数x,  相似文献   

8.
求有理分函数 y=a1x2 +b1x+c1ax2 +bx+c 的值域 (或最值 )是中学数学中的一个难点 ,由于受到各种资料的影响 ,学生常用一元二次方程根的判别式求解。但由于求解过程中采用了非等价变形 ,易导致解题出错。本文试对这个问题作初步探讨。用一元二次方程根的判别式求函数y =a1x2 +b1x+c1ax2 +bx+c (a≠ 0 )      (1)的值域 ,先作如下变形 :(ay -a1)x2 + (by-b1)x +cy-c1=0     (2 )由于x是实数 ,所以△ ≥ 0 ,即(by-b1) 2 - 4(ay -a1) (cy-c1) ≥ 0    (3)解不等式 (3)即得函数 (1)的值域。其实上述解法 ,求得 (3)中 y的值的集合不…  相似文献   

9.
初三代数教材对一元二次方程根与系数关系叙述为:如果ax~2+bsr+c=0(a≠0)的两个根是x_1、x_2,那么x_1+x_2=-b/a,x_1·x_2=c/a。此定理对结论成立的先决条件交代很清楚,即“原方程存在两个根x_1和x_2”。但在教学过程中,我发现有些学生在运用这一关系时却只记住了结果,忽视了条件,因粗心大意导致解题错误。 错例1.判断正误:方程ax~2+bx+c=(a≠0)两根之和为-b/a。( ) 错误判断为“对”。 错例2.若方程x~2+(m~2-1)x+1+m=0的两根互为相反数,则m的值为( ) (A)1或-1; (B)1; (C)-1; (D)0。 错选(A)。  相似文献   

10.
学过《平面解析几何》的同学都知道:过椭圆x~2/a~2+y~2/b~2=1上一点P(x_0,y_0)的切线的方程是(x_0x)/a~2+(y_0y)/b~2=1①因(x_0~2)/a~2+(y_0~2)/b~2=1,又可写成(x_0x)/a~2+(y_0y)/b~2=(x_0~2)/a~2=(y_0~2)/b~2②, 一些细心的同学会问:当P(x_0,y_0)点不在椭圆上时,方程①或②的几何意义是什么呢?过椭圆外定点的椭圆的切线能否用方程①或②来表示呢?而少数粗心的同学在解题时没考虑点P的位置,直接套用方程①或②导致错误的情况时有发生。因此,有必要引导学生利用熟知的原理和方法,进行一番较深入的探讨。下面我们给出:  相似文献   

11.
设方程 ax~2+bx+c=0(a≠0)的两根为 x_1,x_2,那么 x_1+x_2=-(b/a),x_1·x_2=(c/a).这就是一元二次方程根与系数的关系.由根与系数的关系,我们知道:以两个数 x_1,x_2为根的一元二次方程(二次项系数为1)是x~2-(x_1+x_2)x+x_1·x_2=0.根与系数的关系使我们能够由方程来讨论根的性质;反之,则可以由根的性质来确定方程的系数.因而,根与系数的关系的应用相当广泛.我  相似文献   

12.
贵刊1994年第一期发表的“一类方程的巧解”一文,应用关于 x 的方程 x (1/x)=c (1/c)的解是 x_1=c,x_2=(1/c)这一结论巧妙的解出了初中教材中的一些习题.在该文的启发下,笔者发现:关于 x 的方程 x (α/x)=c (α/c)的解是 x_1=c,x_2=(α/c).应用这一结论可以进一步巧解教材和初中数学资料中的很多方程.以下举例说明之.  相似文献   

13.
虚系数一元二次方程总可化为如下形式: x~2+(a+bi)x+c+di=0 (*)其中,a、b、c、d(R,b、d不同时为零. [定理] 方程(*)有实根的充要条件是b≠0且d~2=b |a b c d|.这时方程(*)的有唯一实根-d/b. 证:利用韦达定理易知(*)不能有二实根,也不能有二共轭虚根.设x_1(R_1,x_2∈R是(*)的二根,则  相似文献   

14.
一元二次方程是初中数学学习的重点.本文给出一元二次方程的两个性质,并举例说明其应用,供同学们学习参考.一、性质性质1:在一元二次方程ax2+bx+c=0 (a≠0)中,若a+b+c=0,则x1=1,x2=ca. 证明:由a+b+c=0,得b=-a-c.将其代入原方程,得ax2+(-a-c)x+c=0,即(x-1)(ax-c)=0.因此,x1=1,x2=ca. 下面是一个类似的性质:性质2:在一元二次方程ax2+bx+c=0 (a≠0)中,若b=a+c,则x1=-1,x2=-ca.(证明略)二、应用举例例1解下列方程:(1)8x2+15x-23=0;(2)5x2+11x+6=0. 解:(1)∵8+15-23=0,∴x1=1,x2=-238.(2)∵11=5+6,∴x1=-1,x2=-6…  相似文献   

15.
一、原理若y=f(x)+g(x),仅当f(x),g(x)同时在某个x_0处取得最大(小)值,则在x_0处y取最大(小)值f(x_0)+g(x_0)。二、应用举例例1 求y=sin~2x+(2/(sin~2x)最值。解:y=(sin~2x+(1/(sin~2x)))+(1/(sin~2x)。设f(x)=sin~2x+(1/(sin~2x)≥2,g(x)=(1/(sin~2x)≥1。  相似文献   

16.
一元二次方程ax2 +bx+c=0(a≠θ)的系数和a+b+c=0,则x=1满足方程x2+bx+c=0,即x=1是该方程的一个根.反过来,x=1是一元二次方程ax2+bx+c=0(a≠0)的一个根,则ab+c=0. 运用这个结论可解决不少的问题.请看: 例1 解方程:4x2-5x+ 1=0. 分析与解:因为4+(-5)+1=0,所以x1=1是方程的一个根.设另一根为x2,由根与系数的关系,得1×x2=1/4,即x2=1/4,所以方程的解是x1=1,xx=1/4. 温馨小提示:已知一元二次方程的一个根,运用根与系数的关系可简捷地求出另一个根.  相似文献   

17.
在一元二次方程ax2+bx+c=0(a≠0)中,常常隐含着a+b+c=0,此时方程的根究竟有什么特征呢?下面我们来研究这个问题。首先,为了能更清楚地看到方程与系数的关系,我们可以先由a+b+c=0,得b=-(a+c),代入方程消去b,得ax2-(a+c)x+c=0,ax(x-1)-c(x-1)=0,(x-1)(ax-c)=0,哈,原来方程的两根为x1=1,x2=ca。由此,我们得到如下一个结论:当a+b+c=0时,关于x的一元二次方程ax2+bx+c=0(a≠0)的一根为1,另一根为ca。运用这个简单的结论解决一些相关的问题十分简洁。请看:例1解方程:穴3姨-2雪x2+穴1-3姨-2姨雪x+2姨+1=0分析:直接用解一元二次方程的方法求解显然很…  相似文献   

18.
方程af(x)+f(x)~(1/b)=c,一般用代换法来解。但当a、b、c为整数,a>0时,用观察法来解,显得更为简便,下面介绍这种方法。定理:如果存在平方数m≥0,使 c=am+m~(1/b)则方程af(x)+f(x)~(1/b)=c ①与方程(f(x)-m~(1/2))(f(x)+b/a+m~(1/2)=0同解②其中f(x)为x的解析式。证明:设a是方程①的解,则 af(a)+f(a)~(1/b)=am+m~(1/b)∵ f(x),m≥0,  相似文献   

19.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

20.
定理1.整系数一元二次方程ax~2+bx+c=0(a≠0)存在整数解x=0的条件是c=0;存在整数解x=1的条件是a+b+c=0;存在整数解x=-1的条件是a-b+c=0。证明:x=0是ax~2+bx+c=0的解  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号