首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
命题 若P是△ABC内的一点 ,记△BPC、△APC、△APB的面积为SA 、SB 、SC ,则SA ·PA SB ·PB SC ·PC =0 .证明 延长AP与BC边相交于D点 ,则|BD||DC| =S△ABDS△ACD=S△BPDS△PCD=-S△BPD-S△PCD等比定理 SCSB.记|BD||DC|=λ ,有BD=λDC ,所以PD- PB=λ( PC- PD) ,所以 - ( 1 λ) ·PD PB λPC=0 .又因为PD =- |PD||PA| · PA =-SASB SC·PA ,所以 SASB SC( 1 SCSB) ·PA PB SCSB ·PC=0 ,所以SA·PA SB·PB SC·PC =0 .推论 1 当P为△ABC的内心时 ,有sin…  相似文献   

2.
本文现将张角公式及其在数学竞赛解题中的应用介绍如下: 一、张角公式如图,设直线ACB外一视点P,对于线段AC、CB的张角分别为α、β,且α β<180°,则sin(α β)/PC=sinα/PB sinβ/PA 证明:∵△PAB=△PAC △PCB,∴1/2PA·PB·sin(α β)-1/2PA·PC·sinα 1/2PC ·PBsinβ。∴两边同除以1/2PA·PB·PC,即得欲证式。二、应用举例例1 连结正△ABC的外接圆劣弧AB上一点P的线段CP交AB于D,求证:1/PA 1/PB=1/PD(1990年山西省初中数学  相似文献   

3.
几何综合题     
总复习阶段,应有针对性地、适量地研究一些不同类型的几何综合题的解法.几何综合题大多是圆与平行线、三角形、四边形、相似三角形、锐角三角函数等知识的综合运用.近几年来,全国各地中考题中,一题多问、开放性题目是几何综合题常见类型.图1例1如图1,已知正△ABC内接于⊙O,P是劣弧BC上一点,PA交BC于点E.求证:(1)PA=PB+PC;(2)P1B+P1C=P1E.证明:(1)在AP上取一点D,使AD=PC,联结BD.易知△ABD≌△CBP.则BD=PB.又∠3=∠4=60°,所以△PBD是等边三角形.故PD=PB,即PA=PB+PC.(2)证法1:因为∠3=∠5=60°,∠1=∠2,所以,△PAB∽…  相似文献   

4.
本文谈到的基本题,有证明角相等、线段相等、等积式或比例式.在证明一些非基本题时,有时可转化为基本题求解.1 线段的和差关系 证明a±b=c类题,往往可通过“截长补短”转化成证明线段相等. 例1 如图1,△ABC是等边三角形,P为BC上任一点.求证:PA=PB PC. 分析:采取“截长”法,可在PA上截取PD=PB,转化成证明DA=PC.这可通过证明△PCB和△DAB全等来实现.  相似文献   

5.
开放探索题是考查发散思维能力与创新意识的极好题型,下面以中考题为例,解析如下.开放探索题是考查发散思维能力与创新意识的极好题型!下面以中考题为例!解析如下.下.例1(2005年福州市中考题)已知:如图,点C、D在线段AB上,PC=PD,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为.你得到的一对全等三角形是△≌△.解析:结合图形和已知条件,由PC=PD,可以推得∠PCB=∠PDA.进而可以推得∠PCA=∠PDB.若添加∠A=∠B,则还可推得PA=PB.这样在△PAC和△PBD中,∠A=∠B,∠PCA=∠PDB,PA=PB,由三角形全等的判定定理易得…  相似文献   

6.
平移法和旋转法是平面几何中解题的两种有效方法.通过图形变换,借助图形各元素之间的新旧位置关系探索解题的方法,在解决平面几何问题时有广泛的应用.例1已知,如图1,△ABC中,AC=AB,∠BAC=90°,P为△ABC内一点,PA=1,PB=3,PC=7姨.求∠APC的度数.分析:从PB=3,PC=7姨来看,如果还有一条线段为2姨,则可构成直角三角形,这样只要把PA逆时针方向旋转90°,(也可以顺时针方向旋转90°)构成一个等腰直角三角形,问题可以解决.解:过A点作DA⊥AP,(逆时针方向旋转)且DA=AP=1,连结CD、PD∵△DAP为等腰直角三角形,∴PD=2姨,∠DPA=45°.∵…  相似文献   

7.
1.张角公式如图1,设直线ACB外一点P对于线段AC、CB的张角分别为αβ,则sin(α+β)/PC=sinα/PB+sinβ/PA证明:因为S△PAB=S△PAC+ S4PCB,所以1/2PA.PB·sin(α+β)=1/2PA·PC·sinα+1/2PC·PB·sinβ,两边同除以1/2PA·PB·PC,即得所证等式.  相似文献   

8.
1.以共点向量为基底例1 在△ABC内求一点P,使PA2 PB2 PC2的值最小. 解如图1, 设CA=a,CB=b,CP=x,以a,b,x为一组基底,有PA=a-x,PB=b-x,故|PA|2 |PB|2 |PC|2  相似文献   

9.
【例1】已知(如图1),PB⊥AB,PC⊥AC,且PB=PC,D是A上的一点,求证:∠BDP=∠CDP.【错解】∵PB⊥AB,PC⊥AC,且PB=PC,∴∠PAB=∠PAC即AP是∠BAC的平分线.∵D是AP上的一点,∴DB=DC(角平分线上的点到角两边距离相等).在△PDB和△PDC中PB=PC,DB=DC,PD=PD∴△PDB≌△PDC(SSS).∴∠BDP=∠  相似文献   

10.
命题已知三棱锥P-ABC,Q是底面△ABC内的一点,S△BQC∶S△CQA∶S△AQB=α∶β∶γ,且α β γ=1.(ⅰ)一平面分别交PQ、PA、PB、PC于Q′、A′、B′、C′点,则PQPQ′=α.PPAA′ β.PPBB′ γ.PPCC′.(ⅱ)过P点的一个球面,分别交PQ、PA、PB、PC于Q′、A′、B′、C′点,则PQ′.PQ=α.PA′.PA β.PB′.PB γ.PC′.PC.为证明该命题,先介绍几个引理.引理1已知P为△ABC内一点,S△BPC∶S△CPA∶S△APB=m∶n∶r,延长AP交BC于M,则MBMC=nr,PAPM=n m r.引理2已知M为△ABC边BC上一点,且BMMC=mn,任作一直线…  相似文献   

11.
本文在这里向读者介绍一个与面积有关的几何命题.定理由点 P 发出的三射线 PA、PB、PC,设L、M、N 分别在射线 PA、PB、PC 上,使得 PL/PA=λ_1,PM/PB=λ_2,PN/PC=λ_3(图1).则 L、M、N 三点共线的充要条件为S_(△PBC) S_(△PAB)  相似文献   

12.
<正>已知三角形的3条边长,我们有海伦公式来表示三角形的面积,那么已知三棱锥的6条棱长,如何表示三棱锥的体积呢?设三棱锥P-ABC的各棱长分别为PA=a,PB=b,PC=c,BC=d,CA=e,AB=f.下面我们来探讨其体积公式.在3条棱PA,PB,PC上分别取点D,E,F,使PD=PE=PF=1.设EF=x,FD=y,DE=z,则△DEF的面积为  相似文献   

13.
引理(费尔马问题) 已知△ABC,使PA+PB+PC为最小的平面上的点P称为△ABC的费尔马点. 解:显见点P不可能在△ABC外. (1)若△ABC的每个内角都小于120°,将△ABP绕B点逆时针旋转60°至△A_1BQ的位置,如图1,则△BPQ为正三角形.于是PA+PB+Pc=A_1Q+QP+CP. ∵A_1、C为定点,欲使PA+PB+PC最小,P点应在A_1C上.  相似文献   

14.
<正>张角公式如图1,设直线ACB外一点P对于线段AC、CB的张角分别为α、β,则sin(α+β)/PC=sinα/PB+sinβ/PA.证明因为S_(△PAB)=S_(△PAC)+S_(△PCB),所以1/2PA·PB·sin(α+β)=1/2PA·PC·sinα+1/2PC·PB·sinβ,两边同除以1/2PA·PB·PC,即得所证等式.下面举例说明它的应用.例1如图2,已知BP:PQ:QC=3:2:1,AG:GC=4:3,则BE:EF:FG=___.  相似文献   

15.
1.定理 如图1,由点P发出的三射线PA、PB、PC,且∠APC=α,∠CPB=β,∠APB=α β<180°,那么A、B、C三点在一直线上的充要条件是 证明 必要性:若A、B、C三点共线,则 S△PAB=S△PAC S△PCB,因此两边同除以1/2PA·PB·PC,即得所欲证的等式.  相似文献   

16.
1 提出问题 问题1 在△PAB中,PB=2PA,AB=6,则△PAB面积的最大值为______。  相似文献   

17.
设PC、PD分别为△PAB的∠APB的内、外角平分线,由三角形内、外角平分线性质,可得AC/CB=PA/PB=AD/DB,更一般地,若两点C、D内分与外分同一线段AB成同一比值,即AC/CB=AD/DB,则称点C、D调和分割线段AB.显然,当C、D调和分割AB时,也有A、B调和分割CD:CA/AD=CB/BD,如图1,其中PA,PB,PC、PD也称为调和线束.  相似文献   

18.
有些几何问题仅靠添加辅助线是很难解出的,运用“旋转”却可化难为易.1.求长度例1如图1,等边△ABC的边长a=(25 12(3~(1/2)))~(1/2),P是△ABC内的一点,若PA2 PB2=PC2,且PC=5,求PA、PB的长.  相似文献   

19.
平面几何中有一个与面积关系有关的张角公式,一般不引人注目。但在教学时,却发现张角公式能帮助解决许多几何题,有的还是典型的难题。现分两方面介绍如下,供初中数学教师教学时参考。一、张角公式已知由点P发出的三射线PA、PB、PC;且∠APC=α,∠CPB=β,∠APB=α β<180°,那么A、B、C三点在一直线上的充要条件是: sin(α β)/PC=sinα/PB sinβ/PA 证明:若A、B、C三点共线, 则△PAB=△PAC △PCB 故 1/2PA·PBsin(α β)=1/2PA·sinα 1/2PB·PCsinβ两边同除以1/2PA·PB·PC,即得所欲证的等式。反之,若命题中等式成立,则反推可得: △PAB=△PAC △PCB。这说明△ABC=|△PAB-△PAC-△PCB|=0,所以A、B、C三点共线。  相似文献   

20.
题已知空间四向量PA,PB,PC,PD满足λ1PA λ2PB λ3PC λ4PD=0,λ1,λ2,λ3,λ4为实数,|PA|=m,|PB|=n,|PC|=s,|PD|=t.试求∠PBC,∠PCD,∠PDB.(注:供题人对第一位正确解答者给予奖金50元)有奖解题擂台(84)@代银$安徽省淮南市第三中学!232001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号