首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
裘良 《中学教研》2007,(2):37-38
文献[1]提供了一道奥赛题,这是一个三元对称不等式:题目设正实数 a,b,c 满足 a b c=1.证明:10(a~3 b~3 c~3)-9(a~5 b~5 c~5)≥1.(1)1 不等式的另证引理已知函数 f(x)=x 3x~2-x~3-3x~4,则当1≥x y≥x≥y≥0时,f(x)≥f(y)≥0.(2)证明当1≥x y≥x≥y≥0时,首先f(y)=y 3y~2-y~3-3y~4=y(1 3y)(1-y~2)≥0;其次f(x)-f(y)=(x-y) 3(x~2-y~2)-(x~3-y~3)-3(x~4-y~4)=(x-y){1-(x~2 xy y~2) 3(x y)[1-(x~2 y~2)]}.因为 x-y≥0,又1-(x~2 xy y~2)≥(x y)~2-(x~2 xy y~2)=xy≥0,1-(x~2 y~2)≥(x y)~2-(x~2-y~2)=2xy≥0,所以 f(x)-f(y)≥0,即 f(x)≥f(y)≥0.不等式《1)的证明为方便起见,记f(x)=x 3x~2-x~3-3x~4  相似文献   

2.
题目设二次函数y=(a+b)x~2+2cx-(a-b)。其中a、b、c分别为ΔABC的三边,当x=-(1/2)时,二次函数的最小值为-(a/2)。试判断ΔABC的形状。(1994年甘肃省中考试题) 解由题意可设二次函数的解析式为 y=(a+b)(x+1/2)~2-(-(a/2)) =(a+b)x~2+(a+b)x+(b-a/4), 又∵y=(a+b)x~2+2cx-(a-b), 比较系数,得{a+b=2c, {b-a/4=-(a-b).解得 a=b=c。  相似文献   

3.
不等式a b≥2(ab)~(1/2)是中学数学中一个用得很广的基本不等式,但在应用中常见一些错误,现举几例. 一、忽视了a b≥2(ab)~(1/2)成立条件而导致的错误例1 设a、b、c为正数,求证(a b c)~3≥27(a b-c)(b c-a)(c a-b) 错误证法: ∵a b c=(a b-c) (b c-a) (c a-b)>0 ∴(a b-c) (b c-a) (c a-b)≥3((a b-c)(b c-a)(c a-b))~(1/2) 即(a b c)~3≥27(a b-c)(b c-a)(c a-b) 分析:虽a>0,b>0,c>0,但a b-c,b c-a,c a-b不一定都大于0,而x y z≥3(xyz)~(1/2)的中x、y、z必须都大于0.  相似文献   

4.
<正>本文先通过构造函数,应用二次函数的判别式,给出文[1]中问题5的一种证明.问题已知a,b,c>0,x,y,z∈R,求证:a~3(y~2+z~2)+b~3(z~2+x~2)+c~3(x~2+y~2)≥2abc(yz+zx+xy).(1)证明由对称性,不妨设a≤b≤c.构造关于主元x的二次函数  相似文献   

5.
题目(2012年高考湖北卷·理6)设口,b,c,x,y,z是正数,且a~2+6~2+c~2=10,x~2+y~2+z~2=40,ax+by+xz=20,则a+b+c/x+y+z=A.1/4.B.1/3 C.1/2 D.3/4以上题目旨在考查柯西不等式、等比性质等基础知识.笔者将其进一步推广得到一般性的变式题1、2(如下),并进行探究.变式1设a,b,c,z,y,z,p,q,r.是正数,且a~2+b~2+c~2=p~2,x~2+y~2+z~2=q~2,ax+by+cz=r~2,  相似文献   

6.
在关于不等式的许多命题中,都有一个“当且仅当…时取等号往往不被重视,其实,在解题时它们是很有作用的。本文介绍解题的一些例子。例1.设a,b,c是三角形的三边,则此三角形为等边三角形的充要条件是:a~2(b+c-a)+b~2(c+a-b)+c~2(a+b-c)=3abc (1) 证明:令b+c-a=x,c+a-b=y,a+b-c=z, 则z,y,z>0,  相似文献   

7.
如果正整数a、b、c、d满足关系a~2+b~2+c~2=d~2,则a、b、c、d可分别作为长方体的长、宽、高和对角线。于是,我们说a、b、c、d是一组长方体数。长方体数可看作是勾股数的三维推广,从这一点就可说明长方体数在立体几何数学中,在第二课堂教学中均具有参考价值。长方体数是不定方程x~2+y~2+z~2=w~2的正整数解。因此,本文从讨论不定方程x~2+y~2+z~2=w~2的正整数解出发推导构造长方体数的两个法则。因不定方程x~2+y~2+z~2=w~2有正整数解。可先假定(x,y,z)=1。因当(x,y,z)=d_0>1时,由d_0~1|x~2,d_0~2|y~2,d_0~2|z~2有d_0~2|w~2,即有d_0~2|w,此时不定方程两边可同时约去d_0,便有(x/d~0,y/d_0,z/d_0)=1。当(x,y,z)=1时,显然x、y、z不可能同时为  相似文献   

8.
《中学数学》(苏州大学)1993年第1期与第5期集锦栏对著名的W.Janous猜测: “设x、y、z都是正数,则有y~2-x~2/z+x+z~2-y~2/x+y+x~2-z~2/y+z≥0”给出了两个简证。现可子以推广,得到: 命题设x、y、z都是正教,m、n均为自然数,则有(y~m-x~m)/(z~n+x~n)+(z~m-y~m)/(x~n+y~n)+(x~m-z~m)/(y~n+z~n)≥0. 下面利用对称思想给出一个巧妙的证法。证明:因为命题中不等式左边是一个关于x、y、z的轮换对称式.所以可设x≥y≥z,于是, 左式=((y~m-x~m)/(z~n+x~n)-(y~m-x~m)/(y~n+z~n))+((z~m-y~m)/(x~n+y~n)-(z~m-y~m)/(y~n+z~n))=(y~m-x~m)·(y~n-x~n)/((z~n+x~n)(y~n+z~n)) +(z~m-y~m)·(z~n-x~n)/((x~n+y~n)(y~n+z~n)) 又对任何自然数p,有a~p-b~p=(a-b)(a~(p-1)+a~(p-2)b+…+b~(p-1))。从而,左式  相似文献   

9.
设 x,y,z∈R~ ,求证:(y~2-x~2)/(z x) (z~2-y~2)/(x y) (x~2-z~2)/(y z)≥0这个不等式就是 W.Janous 的猜测不等式,很多数学刊物上介绍了这一猜测的多种证明方法,这里笔者再给出一种更为简捷的证明方法.证明:设 x y=a,y z=b,z x=  相似文献   

10.
《中学数学教学》2020年第1期上,“有奖解题擂台(127)”刊有以下问题在锐角△ABC中,求证:1cosA+1cosB+1cosC≥1sinA2sinB2sinC2-2.证法1(扬学枝提供)设△ABC边长为BC=a,CA=b,AB=c,由对称性,不妨设a≥b≥c,则原式等价于∑2bc-a2+b2+c2≥8abc∏(-a+b+c)-2∑(2bc-a2+b2+c2+1)≥8abc∏(-a+b+c)+1∑(a+b+c)(-a+b+c)-a2+b2+c2≥-∑a3+∑a(b+c)2∏(-a+b+c)∑(a+b+c)(-a+b+c)-a2+b2+c2≥∑a(a+b+c)(-a+b+c)∏(-a+b+c)∑-a+b+c-a2+b2+c2≥∑a(a-b+c)(a+b-c),由于∑a(a-b+c)(a+b-c)=12∑(1a-b+c+1a+b-c)=∑1-a+b+c.  相似文献   

11.
有关证明条件等式的代数题,是一类综合性比较强的题目,如果能让学生掌握其各种不同的证明方法,对于培养他们的逻辑思维能力和熟练的技能技巧都是大有益处的。下面介绍几种证明条件等式的常用方法。一、将已知条件直接代入欲证等式例1 已知:x=(a-b)/(a b),y=(b-c)/(b c), z=(c-a)/(c a) 求证:(1 x)(1 y)(1 z) =(1-x)(1-y)(1-z) 证明:∵(1 x)(1 y)(1 z) =(1 (a-b)/(a b))(1 (b-c)/(b c))(1 (c-a)/(c a)) =2a/(a b)·2b/(b c)·2c/(c a) (1-x)(1-y)(1-z) =(1-(a-b)/(a b))(1-(b-c)/(b c))(1-(c-a)/(c a)) =2b/(a b)·2c/(b c)·2a/(c a) ∴ (1 x)(1 y)(1 z)=(1-x)(1-y)(1-z) 二、通过已知条件之间的相互变换,得出求证式。例2.设x=by cz,y=cz ax,z=ax by 试证:(a 1)x=(b 1)y=(c 1)z  相似文献   

12.
例1已知(x/(a-b))=(y/(b-c))=(z/(c-a)),求x+ y+z的值.解设(x/(a-b))-(y/(b-c))-(z/(c-a))=k,则x=k(a-b),y=k(b-c),z=k(c-a)于是x+y+z =k(a-b)+k(b-c)+k(c-a)=0,所以x+y+z=0.以上解法中,并没有具体求出x,y,z关于a,b,c的表达式.  相似文献   

13.
《中学数学方法的综合运用》,(湖南人民出版社出版,1981年8月第1版)书中第154页例3:求函数y=x 4 (5-x~2)~(1/2)的极值。书上的解法照抄如下: [解法一]: 令z=x (5-x~2)~(1/2),则z-x=(5-x~2)~(1/2),从而有 x~2-2zx x~2=5-x~2或2x~2-2zx (z~2-5)=0. 要x取实数值,必须其判别式Δ=4z~2-8(z~2-5)≥0. 即 z~≤10,-10~(1/2)≤z≤10~(1/2) ∴ 4-10~(1/2)≤y≤4 10~(1/2) [解法二] 利用三角代换解法如下:  相似文献   

14.
-.选择问:(3分×10=30分)1.下列因式分解正确的是( ) (A)x~2 6x 5=(x 3)(x=2) (B)4x~2-y~2=(4x y)(4x-y) (C)a~4-x~2-4ax-4a~2=(a~2 x 2a)(a~2-x-2a~2) (D)x~4-4x~2 3=(x~2-1)(x~2-3)2.使分式(x-1)/(|x| 1)有意义的x的取值是( ) (A)x≠±1 (B)x≠1 (C)x≠-1 (D)x取一切数3.下列多项式因式分解后不含(x-1)的为 ( ) (A) x~3-x~2-x 1 (B)x~2 y-xy-x  相似文献   

15.
在文[1]里,笔者给出并证明了如下有趣的无理不等式: 问题 设a≥x>1,b≥y>1,c≥z>0,求证:(a+b+c)-(x +y+z)<√a2-x2+√b2-y2+√c2-z2≤√(a+b+c)2-(x+y+z)2.① 等号仅当a:x=b:y=c:z时成立. 下面给出不等式①的几个应用.  相似文献   

16.
等比数列前n项的求和公式的推论: (a-b)(a~(n-1)+a~(n-2b)+…+b~(n-1))=a~n-b~n以及它的特殊形式: (1-q)(1+q+q~2+…+q~(n-1))=1-q~n都是因式分解的重要公式,而因式分解则是解题(如求值,证明等)的重要手段,以下各例,可以说明。例1 分解因式X~(12)+x~9+x~6+x~3+1(1978年全国数学竞赛决赛题) =(x~4+x~3+x~2+x+1) (x~8-x~7+x~5-x~4+x~3-x+1) 例2 已知ω=e~((2π/5)i),求1+ω~4+ω~8+ω~(12)+ω~(16)之值。解原式=((1-ω~4)(1+ω~4+ω~8+ω~(12)+ω~(16))/1-ω~4 =(1-ω~(20))/(1-ω~4)=(1-(ω~5)~4)/(1-ω~4) ∵ω~5=(e~((2π/5)i))~5=e~(2πi)=1 ω~4=e~((8/5)πi)≠1 ∴原式=0 例3 求能使2~n-1被7整除的所有正整数n。(第六届国际数学竞赛题) 解分二种情况讨论。 (1)如果n是3的倍数,我们设n=3k(k为正整数),这时  相似文献   

17.
错在哪里     
一、北京师大燕化附中史树德来稿题:已知 A={(x,y)|x~2+2y~2-2ax+a~2-2=0},B={(x,y)|y~2-x=0}。在A∩B≠φ的条件下,求实数a的许可值集。解:点集A即椭圆 1/2(x-a)~2+y~2=1 ①点集B是抛物线 y~2=x_0 ②由题意A∩B≠φ,将②代入①并整理得:x~2+2(1-a)x+a~2-2=0 ③方程③必有实根, ∴ 4(1-a)~2-4·(a~2-2)≥0,解得 a ∈(-∝,3/2]。解答错了!错在哪里?  相似文献   

18.
一、精心选一选(每小题3分,共24分)1.下列变形,属于因式分解的是( ).A.2xy(x+3x~2y)=2x~2y+6x~3y~2B.(x-4)~2=x~2-8x-16C.5a~2-10a=5a(a-2)D.ax~2+bx+c=x(ax+b)+c2.把多项式-5ab+10abx-25aby 因式分解的结果是( ).A.-ab(5+10x-25y) B.-5ab(1-2x+5y)C.-5ab(2x-5y) D.-5ab(1-2x-5y)3.多项式-4xy~2+12x~2y~2-16x~3y~2z 的公因式是( ).  相似文献   

19.
本刊 2 0 0 3年第 5期有奖解题擂台 (63 )中 ,邵剑波老师提出了如下一个条件不等式问题 :证明或否定 ,设a >b >c >0 ,x21a2 y21b2 z21c2 =1 ,x22a2 y22b2 z22c2 =1 ,且 (x -x1 x22 ) 2 (y -y1 y22 ) 2 (z -z1 z22 ) 2 =14[(x1-x2 ) 2 (y1-y2 ) 2 (z1-z2 ) 2 ],则x2 y2 z2 ≤a2 b2 c2 。上述问题中的结论是成立的 ,本文给出一个证明。证明 由x21a2 y21b2 z21c2 =1x22a2 y22b2 z22c2 =1知 ,P1(x1,y1,z1) ,P2 (x2 ,y2 ,z2 )是椭球面 x2a2 y2b2 z2c2 =1上的两点 ,设P1P2 的中点为P0 ,则P0 点坐标为 (x1 x22 ,y1 y22 ,z1 z…  相似文献   

20.
1 .若x是正整数 ,且 y =x4+ 2x3 + 2x2 + 2x + 1 ,则 (   ) .(A) y一定是完全平方数(B)存在有限个x ,使 y是完全平方数(C) y一定不是完全平方数(D)存在无限多个x ,使 y是完全平方数2 .当x -3 y+ 4z=1 ,2x+ y-2z =2时 ,化简x2 -2xy-3 y2 + 2xz+ 1 0 yz-8z2 的结果是 (   ) .(A) 1     (B) 0     (C) 2 -x     (D)x -23 .若a ,c ,d是整数 ,b是正整数 ,且满足a +b =c,b +c=d ,c +d =a,则a +b +c+d的最大值是 (   ) .(A) 0     (B) 1     (C) -1     (D) -54.若a2 + 2a + 5是a4+ma2 +n的一个因式 ,则mn的值…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号