首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
变量代换是解数学题的一种重要策略 ,其中三角代换更是有着广泛而灵活的应用。它能使问题得到巧妙的转化 ,起到化繁为简、化难为易的作用。若运用得法 ,往往能收到事半功倍的效果。1 求最值例 1 已知 x21 6+y29=1 ,求u =x2 +2xy +y2 的最值 ,及相应的x ,y的值。解 据已知 ,可令x =4cosθ,y =3sinθ(θ∈R) ,则u =1 6cos2 θ +2 4sinθcosθ+9sin2 θ=72 cos2θ+1 2sin2θ +2 52 =2 52 sin( 2θ +φ) +2 52 ,其中cosφ =2 42 5 ,sinφ =72 5 ,且 0 <φ <π2 。由此可得 ,cos φ2 =721 0 ,sin φ2 =21 0 。当sin( 2θ +φ) =1时 ,取 2θ+…  相似文献   

2.
在求某些函数的最大值、最小值时,用三角函数代换可巧妙地求解.这里介绍几种求最值时常用的三角函数代换. 1.若|x|≤1,可令x=sinθ. 例1 求函数y=(1-x~2)~(1/x)的最大值和最小值. 解:函数定义域是-1≤x≤1令x=sinθ,θ∈[-π/2,π/2],则(1-x~2)~(1/2)=cosθ,∴ y=sinθcosθ=1/2 sin2θ∴当θ=π/4即x=2~(1/2)/2时,y_(max)=1/2,当θ=-π/4即 x=-2~(1/2)/2时,y_(max)=-1/2.  相似文献   

3.
在很多实际问题中 ,我们要面对各式各样的最值问题 ,利用三角函数的最值 ,如正、余弦函数y=Asinx ,y =Acosx的有界性 ,数学中的均值不等式 ,函数的单调性等知识结合起来 ,常常能使问题化腐朽为神奇 ,在解题的思路、技巧上 ,有章可依、有规可寻 ,使问题得到快速、圆满的解决 现举数例加以说明 :例 1:设f (x) =2sinxcosx 52sinx cosx ,x∈ [0 ,π2 ],(1) ,求f (π12 ) ,(2 )求f (x)的最小值 例 2 :求f (θ) 4sinθcosθ - 1sinθ cosθ 1,θ∈ [0 ,π2 ]的最值 上两例是典型的三角函数最值应用题 ,其思路可能是利用正、余弦函数的有界性 |sinx|≤ 1,|cosx|≤ 1或利用均值不等式、或利用函数的单调性 ,经过适当三角变换 ,使问题得到解决 例 1求解如下 :f (x) =2sinxcosx 52sinx cosx =sin2x 522sin (x π4 ),当x =π12 时 ,f (π12 ) =sin π6 522sin π3=6 注意f (x) =1 2s...  相似文献   

4.
例1求y=cosx+!3sinx,x∈π#6,23π$的值域.思路:形如y=asinx+bcosx的函数通常转化成y=!a2+b2sin(x+θ)的形式.解:y=cosx+!3sinx=2sin(x+π6).由x∈%π6,23π&,得x+π6∈%π3,56π&.∴21≤sin(x+π6)≤1,故1≤y≤2.即原函数的值域为[1,2].例2求y=sin2x-sinx+1,x∈π%3,34π&的值域.思路:形如y=asin2x+bsinx+c(a≠0)的函数,可利用换元法转化为在[-1,1]内的二次函数问题.即求y=at2+bt+c的值域.解:y=sin2x-sinx+1=(sinx-12)2+43.又x∈%π3,34π$,∴sinx∈!22,%$1.而(sinx-21)2+43在!22,%$1上单调递增,∴y∈3-!22,%$1.即所求值域为3-!22,%$1.例3…  相似文献   

5.
用三角换元法证明不等式是基本方法,根据题意恰当地进行换元,则可使问题快速获解,达到事半功倍的效果.例1设点P(x,y)是圆x~2+(y-1)~2= 1上任意一点,若总有x+y+c≥0,试求c的取值范围.解因为点P(x,y)在圆x~2+(y-1)~2= 1上,故可设x=cosθ,y=1+sinθ,则x+y+c=cosθ+sinθ+1+c≥0恒成立,  相似文献   

6.
对于求形如函数 y=x px( p >0 )型的最值问题 ,如果我们能形似联想到三角公式tanα 1tanα =2sin2α,便会考虑实施三角代换x =ptanα ,使其转化成三角函数问题 .该代换架设了这类函数三角化的一座“桥” ,从而为该问题的求解提供了又一解题新通途 .例 1 求函数 y=x2 7x2 4的最小值 .解 因为 y =x2 4 3x2 4,x2 4≥ 2 ,所以可设 x2 4 =3tanα(arctan2 33 ≤α <π2 ) ,所以 y =3tanα 3tanα =2 3sin2α.因为 π2 <2arctan2 33 ≤ 2α <π ,所以 0 相似文献   

7.
三角函数中的参数求值或求范围问题实际上是一般函数中此类问题的具体化,仍然包括等式恒成立、不等式恒成立以及函数最值三大类型,下面举例加以单述.1等式恒成立型这一类型包括奇偶性概念、周期性概念、存在性问题三种,解决方法有一般定义法或先用特值求解再进行证明两个思路.例1若f(x)=3sin(2x+θ)是奇函数,求θ的值.若是偶函数呢?解法1(定义法)因为f(x)=3sin(2x+θ)是奇函数,所以f(-x)=-f(x)对x∈R恒成立,即3sin(-2x+θ)=-3sin(2x+θ)对x∈R恒成立,即sin(-2x+θ)=sin(-2x-θ)对x∈R恒成立,所以-θ+2kπ=θ,即θ=kπ(k∈Z)为所求.解法2(…  相似文献   

8.
问题若实数x,y,z满足x+y+z=12,x 2+y 2+z 2=54,试求xy的最大值和最小值.[JP3]解法1:由x 2+y 2=54-z 2,可设x=54-z 2 cosθ,y=54-z 2 sinθ.[JP]则x+y+z=12,即12-z=54-z 2(sinθ+cosθ)=108-2z 2 sin(θ+π4),从而|12-z|≤108-2z 2,解得z∈[2,6].所以xy=12[(x+y)2-(x 2+y 2)]=12[(12-z)2-(54-z 2)]=z 2-12z+45.由2≤z≤6,得9≤z 2-12z+45≤25,即xy的最大值为25,最小值为9.  相似文献   

9.
引入一个或几个新"元"以代换问题中原 来的"元",使问题化难为易,这种解题方法,称 之为换元法.下面介绍几种常用的换元法. 1.三角代换 例1 已知x,y∈R ,且2/x 8/y=1. 求证:xy≥64. 证明 由条件设 2/x=cos2θ,8/y=sin2θ(0<θ<π/2),  相似文献   

10.
一、利用三角函数的性质求最值1.若函数形如y=asinx+b(或y=acosx+b),可直接利用函数的下列性质来求解:|sinx|≤1,|cosx|≤1.例1求函数y=sin(x-π6)cosx的最值.解析y=sin(x-π6)cosx=12[sin(2x-π6)-sinπ6]=12sin(2x-π6)-41.当sin(2x-π6)=1时,ymax=21-14=41;当sin(2x-π6)=-1时,ymin=-21-41=-43.2.若函数形如y=acssiinnxx++db(或y=acccoossxx++db),先逆向解得sinx(或cosx)的表达式,再结合性质|sinx|≤1(或|cosx|≤1)来求解.例2求函数y=8cos2x+83cos2x+1的最值.解析由原式逆向解得cos2x=38y--y8,由0≤cos2x≤1,得0≤8-y3y-8≤1,解…  相似文献   

11.
对于求形如函数y=x+p/x(p>0)型的最值问题,如果我们能形似联想到三角公式tanα+1/tanα=2/sin2α,便会考虑实施三角代换x=p~(1/2)tanα,使其转化成三角函数问题.该代换架设了这类函数三角化的一座"桥",从而为该问题的求解提供了又一解题新通途.  相似文献   

12.
本文以 2 0 0 4年各地高考三角题为例 ,就题型与策略谈几点拙见 ,以供参考 .1.用公式asinα+bcosα =a2 +b2 sin(α+φ)化为一个角的某个三角函数 .【例 1】 求函数y=sin4 x+2 3sinxcosx-cos4 x的最小正周期和最小值 ,并写出该函数在 [0 ,π]上的递增区间 .解 :y =sin4 x+2 3sinxcosx-cos4 x=3sin2x-cos2x =2sin( 2x-π6)故此函数的周期为π ,最小值为 -2 ,[0 ,π3 ]为递增区间 ,[23 π ,π]为递增区间 .练习 1:求函数y=sinx -12 cosx(x∈R)的最大值 .2 .通过化简转化为以tanα为主元的代数式 .【例 2】 已知tan(α+π4) =2 ,求 12sinαc…  相似文献   

13.
1.若遇a≤x~2 y~2≤b(a,b∈R~ ),可作代换x=t·cosφ,y=tsinφ,其中a~(1/2)≤t≤b~(1/2) 例1 已知1≤x~2 y~2≤2,求w=x~2 xy y~2的最值. 解:∵1≤x~2 y~2≤2,∴设x=tcosθ,y=tsinθ,其中1≤t≤2~(1/2),∴w=t~2cos~2θ t~2cosθsinθ t~2sin~2θ=t~2·(1 (1/2)sin2θ),而(1/2)≤1 sin2θ≤(3/2),∴(1/2)≤w≤3. 2.若遇b~2x~2 a~2y~2=a~2b~2(a,b∈R~ ),可作代换x=acosθ,y=bsinθ(此处要注意解析几何中椭圆、双曲线的参数方程的应用) 例2 已知x、y满足x~2 4y~2=4,求w=x~2 2xy 4y~2 x 2y的最值.  相似文献   

14.
一、利用三角函数的有界性利用正弦函数、余弦正数的有界性:|sinx|≤1,|cosx|≤1,可求形如y=Asin(ωx+φ),y=Acos(ωx+φ),(A≠0,φ≠0)的函数的最值.例1.(2000年全国高考题)已知函数y=12cos2x+3√2sinxcosx+1,x∈R,当函数y取得最大值时,求自变量x的集合.解:y=14(2cos2x-1)+14+3√4(2sinxcosx)+1=14cos2x+3√4sin2x+54=12sin(2x+π6)+54.y取得最大值必须且只需2x+π6=π2+2kπ,k∈Z即x=π6+kπ,k∈Z,所以当函数y取得最大值时,自变量x的集合为{x|x=π6+kπ,k∈Z}.二、转化为二次函数例2.求函数y=f(x)=cos22x-3cos2x+1的最值.解:∵f…  相似文献   

15.
数学思想是研究和解决数学问题和有关实际问题的基本指导思想.求解数学问题时,若能正确地运用数学思想,则可提高解题效率.本文举例介绍在求解三角问题时的常用数学思想.一、函数思想例1已知x3+sinx-2a=0,x∈[-π2,π2],4y3+sinycosy+a=0,y∈[-π4,π4],求sin(x+2y)的值.分析:从已知条件所具有的特征出发,可构造一个新的函数f(x)=x3+sinx,利用该函数的单调性,找出x与2y的关系,从而获得解答.解:令函数f(x)=x3+sinx,由x3+sinx-2a=0,得2a=x3+sinx=f(x).又由4y3+sinycosy+a=0,得2a=-8y3-2sinycosy=(-2y)3+sin(-2y)=f(-2y),∴f(x)=f(-2y),∵x,-2y…  相似文献   

16.
题目 设 0≤θ≤π ,直线l:xcosθ +ysinθ=2和椭圆x26+y22 =1有公共点 .求 :θ的取值范围 .解法一 :(判别式法 )①cosθ=0时 ,直线l的方程为 :y =2 ,此时直线和椭圆相离 .②cosθ≠ 0时 ,直线l的方程为 :x=-ytanθ+2secθ 代入椭圆方程 :x2 +3y2 -6=0 可得 :( 3 +tan2 θ)y2 -4secθtanθ·y+4tan2 θ-2 =0由Δ =16sec2 θ·tan2 θ -4 ( 3 +tan2 θ) ( 4tan2 θ -2 ) ≥ 0 ,解得tan2 θ≤ 1,又∵ 0 ≤θ≤π ,∴θ∈ 0 ,π4∪ 3π4,π .评注 :判别式法是处理直线和圆锥曲线位置关系最常规的方法 ,思想方法较简单 ,但有时运算较复杂 .解…  相似文献   

17.
中学数学中有些问题,直接解答往往受阻,如果能恰当地运用对称思想,可使问题容易解决,同时也给人以美的享受.本文通过几例,介绍它在解题中的几种巧用.一、解三角问题例1.求cosπ7cos2π7cos3π7的值.解:设x=cosπ7cos2π7cos3π7,y=sinπ7sin2π7sin3π7,则xy=18sin2π7sin4π7sin6π7=18sinπ7sin2π7sin3π7=18y.∵y≠0,∴x=18,即cosπ7cos2π7cos3π7=18.点评:这类三角问题常见,若用常规解法难而繁,这里我们挖掘问题潜在的对称性,构造出对称式,使问题得以轻松解决.二、解复数问题例2.已知z∈C,解方程zz-3iz=1+3i.〔1992年高考(理)题24〕…  相似文献   

18.
我们知道复合函数y=sin(arc sinx)在定义域x∈[-1,1]上都有sin(arc sinx)=x.对于复合函数y=arc sin(sinx)的问题,现行教材仅讨论了x∈[-πc/2,π/2]时,arc sin(sinx)=x的情形,实际上,这个复合函数的定义域是x∈R,而值域是y∈[-  相似文献   

19.
三角代换在解题过程中显示着特殊作用 ,本文结合实例介绍几种常见的功能 .1 简化功能有些具有多种解法的题目 ,用三角代换可以去掉根号、减少变元、简化结构、缩小计算量、简化或避免复杂的讨论等等 ,从而化繁为简、化难为易 ,使问题简捷获解 .例 1 求函数 y=x- 1 + 5- x的最值 .析与解 由于 y与 y2同时取得最值 ,故将原式两边平方 ,利用二次函数可求得结论 ,但此法繁琐 .用三角代换可得下面优解 .由 x- 1≥ 0 ,5- x≥ 0 ,得 1≤x≤ 5,0≤x- 1≤ 4 .设 x- 1 =4 sin2 θ( 0≤θ≤ π2 ) ,则y=x- 1 + 5- x=4 sin2 θ+ 5- ( 1 + 4 sin2 θ)=…  相似文献   

20.
我们知道,f(x)严格单调,f(x)=f(y)x=y(*).看起来很平常的这个性质用来巧解下面几道数学竞赛题却很有趣.1求三角函数值例1(1994年全国高中数学联赛试题)已知x,y∈[-π4,π4],a∈R,且x3+sin x-2a=0,4y3+sin ycos y+a=0,则cos(x+2y)=.分析此题的特点是入口非常小,所求的cos(x+2y)的值好象与题设条件没有什么直接关系.我们对方程组中的三个变量x,y,a的系数进行观察,利用t3+sin t在[-π2,π2]上的单调性和性质(*),就能找到一条通向胜利之路.解由于x3+sin x-2a=0,4y3+sin ycos y+a=0,将第二式乘以2与第一式相加并整理,得x3+sin x=(-2y)3+sin(-2y)…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号