首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
柯西不等式:设,,1,2,.iiabRin?LL 有222111()nnniiiiiiiabab===W邋,当且仅当11ab= 22nnaabb==LL时等号成立. 例1 已知椭圆22149xy =在椭圆上求一点P,使得P到直线34200xy =的距离d取最大值. 分析 像这种类型 的题目用常规方法来 解较为繁琐,假如巧用 柯西不等式,问题会变 得比较简单. 解 设00(,)Pxy, 则00|3420|5xyd =. (1) 由柯西不等式: ∴220000(34)(612)23xyxy =??222200(612)()18049xy =, (*) ∴00653465xy-?? ∴00206534202065xy-? ?, ∴20655-00|3420|5xy 20655 , 即 2065206555d- #, (*)式等号成立00612/…  相似文献   

2.
在应用不等式解数学题时,常因对不等式条件未加重视导致错解,本文就对常见不等式错解进行举例分析. 例1 已知,xy都是正数,且2/1/1xy+=,求xy+的最小值. 错解 ∵21,,1,xyRxy++=且 ∴2122xyxy+?即212xy, ∴8xy.又2xyxy+? ∴2842xy+?. ∴xy+的最小值是42. 分析 在2122xyxy+持?取“=”号的充要条件是2xy=,而在2xyxy+持腥 ?”号的充要条件是xy=与2xy=矛盾. 正解 ()(2/1/)xyxyxy+=++ 21/2/xyyx=+++, ∵,,xyR+∴222xyyx+? ∴322xy+?, 当且仅当2/1/1,/2/xyxyyx+==即22,12xy=+=+时, “=”号成立. ∴xy+的最小值是322+. 例2 已知2222221,abcxyz++=++…  相似文献   

3.
利用重要不等式证明其他不等式是不等式证明中常用的一种重要方法 ,它可以简化思维 ,缩短证题过程 ,并且常常表现出一种强有力的规律 .柯西不等式是其中运用得较多的一个重要不等式 ,本文将给出柯西不等式的一个变式 ,并由此变式引申出它的一种推广形式 .对于某些不等式的证明 ,运用它们将十分有效 .1 柯西不等式的变式柯西不等式 对于任意两个实数组 Ai、Bi(i =1,2 ,… ,n) ,有不等式(∑ni =1Ai Bi) 2≤ (∑ni=1A2i) (∑ni=1B2i) (1)成立 .当且仅当 Ai=k Bi(i =1,2 ,… ,n)时等号成立 .当上述 Ai、Bi(i =1,2 ,… ,n)均为正实数时 ,令…  相似文献   

4.
教学实践中,曾遇到过如下题目: 设a、b、cR ,且44454690abc =, 试求333522abc 的最大值. 凭过去积累的解题经验,第一时间认为可以用均值不等式求解这一问题,但多次构设均值不等式都无功而返,偶尔想到柯西不等式常用于求多元函数的最值,一试,解题方案便跃然纸上: 由柯西不等式得 3332(523)abc 2222(55263/2)aabbcc= ?444222(546)(53/2)abcabc , ① 2222(53/2)abc 2222(552/266/4)abc= ?444(546)(51/46/16)abc . ② 注意到题设,综合①、②便有 33352345abc ? 等号当且仅当 2225:52:6:3/2aabbcc==, 且 2225:52:1/26:6/4abcc…  相似文献   

5.
一个不等式再推广   总被引:2,自引:0,他引:2  
文[1]将一个不等式推广为 设*0(1,2,,,2),iainnmN>=澄L, 且1niisa==,则 11111mnnmiiiiiaasan-==--邋. 本文再将其推广为 推广 设0ia>(1,2,,,2)inn=矻,m, ,kN*且mk>,1niisa==,则 111()(1)mnnmkiikkiiiaasan-==--邋. 当且仅当12naaa===L时等式成立. 证明 由文[2]行列式不等式: 若,xy>0,*,mkN,且mk>,则 ,kmmkmkmkyxyxmk--- 整理得1()mmkmkkxmxkyymk--?-,及幂平均不等式:若*0(1,2,,),iainmN>=蜭,则 11()nnmiimiiaann==邋,得 1111()(1)(()/(1))immnnikkkniiijijaasanaan====----邋 111[(()/(1))](1)()mknnmkijikijmakaannmk--==-----邋111()1…  相似文献   

6.
柯西不等式是一个十分重要的不等式定理 ,从近年来国内外各级竞赛中不难看出 ,许多涉及不等式的赛题 ,若能运用柯西不等式进行求解 ,便可获得较为简明的解法 .一、基础知识1 柯西 (Cauchy)不等式定理 设a1、a2 、…、an,b1、b2 、…、bn 均是实数 ,则(a1b1 a2 b2 … anbn) 2≤ (a12 a2 2 … an2 ) (b12 b2 2 … bn2 ) ,等号当且仅当ai=λbi(λ为常数 ,i=1 ,2 ,… ,n)时成立 .这个命题的证明在一般的竞赛教程中都可以查找到 ,这里从略 .2 柯西不等式的推论推论 1 设a1、a2 、…、an,b1…  相似文献   

7.
消元思想是解方程组的基本思想,但还可应用于多元求值中,下面举例介绍几种消元途径. 1 代入消元 例1 若10xy--=,2220yy+-=,求 2()/xyy-的值. 解 由10xy--=,2220yy+-=, 得1xy=+,222yy=-. 则:原式2222(1)(2)22xyyyyy-+--== 3/23/2yy==. 2 加减消元 例2 如果435mnq++=,32mnq+-= 7-,求mq+的值. 解 由已知得435,327,mnqmnq++=+-=- ∴①3?②得:111122mq+= ∴2mq+=. 3 主元消元 例3 已知340xyz--=,280xyz+-= (0)z,求:222xyzxyyzzx++++的值. 解 视x、y为主元,z为常数,已知可求得: 3,2xzyz==, ∴2222214141111xyzzxyyzzxz++==++. 4 比值消元 例4 已…  相似文献   

8.
设ai和bi(i=1,2,…,n)都是实数,则(a12 a22 … a2n)(b12 b22 … b2n)≥(a1b1 a2b2 … anbn)2(1)(1)当且仅当ai=kbi(i=1,2,…n)时成立等号,这就是通常所说的哥西不等式.由该不等式很容易得到一个推,实际上,在不等式(1)中,令ai=xiyi,bi=yi(i=1,2…n)得:x12y1 xy222 … yx2nn(y1 y2 … yn)≥(x1 x2 … xn)2xy121 yx222 … yx2nn≥(x1 x2 … xn)2y1 y2 … yn(2)我们把不等式(2)称为哥西不等式推广即:设xi∈R,yj∈R (i=1,2,…,n),则yx121 yx222 … yx2nn≥(xy11 xy22 …… xynn)2,当且仅当xy11=yx22=…=yxnn时成立等号.哥西不等式推广在处理…  相似文献   

9.
笔者的解题分析文章 ,大多是结合现实情景 ,从“怎样学会解题”(从而怎样学会数学 )的角度谈解题思路的探求、解题过程的改进、解题成果的扩大 ,注重心路的历程和数学的特征 .本文将通过柯西不等式经典证明的分析 ,提炼出一个数量关系证明的程序———演算两次 .1 案例分析———柯西不等式证明的理解1.1 柯西不等式证明的传统认识———判别式法例 1  (柯西不等式 )设a1、a2 、…、an,b1、b2 、…、bn 为两组实数 ,则有不等式∑ni =1 ai2 ∑ni=1 bi2 ≥∑ni=1 aibi 2 .①等号成立当且仅当已知两组数成比例a1b1=a2b2=… =anbn.②(此处约…  相似文献   

10.
洪扬婷 《考试周刊》2014,(88):52-52
<正>二维形式的柯西不等式:若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立.上述不等式可以变形为:|ac+bd|a2+b%2姨≤c2+d%2姨,不等式的左边可以看成点(c,d)到直线ax+by=0的距离,当不等式的右边为定值时,左边有最大值.利用柯西不等式及其变形可以巧妙地解决如下最值问题.例1:求椭圆C:x216+y212=1上的点到直线l:x-2y=0的距离  相似文献   

11.
文[1]利用柯西不等式与算术--几何平均不等式证明了如下分式不等式(即文[1]推论2): 若ai∈R+(i=1,2,…,n),2≤n∈N,m∈N,且S= ai,则有 (1) 本文给出不等式(1)的一个指数推广.  相似文献   

12.
~~ /4OABSp=扇形, ∴11sincos224paa <, 即sincos/2aap <. 综上得:1sincos2paa< <. (2)由OAPRTOATOAPSSSDD<<扇形得: 2111222OAMPaROAAT?的x的范围. 解 如图,在y轴的 正方向取1/2ON=,过 N作x轴的平行线交单 位圆于1P、2P, 过1P、 2P分别作x轴的垂线分 别交x轴于1M、2M, 显然11221/2MPMPON===, 设111222,MOPMOPaa=? 所以由正弦线,余弦线的定义可知: 12121sinsin,(0,),(,)222ppaaaap==挝, ∴125,,66aapp== ∴适…  相似文献   

13.
应用柯西不等式,容易得到如下不等式:设 a_i∈R,b_i∈R~ (i=1,2,3,…,n),则有a_1~2/b_1 a_2~2/b~2 … a_n~2/b_n≥(a_1 a_2 … a_n)~2/b_1 b_2 … b_n(当且仅当 b_i=ka_i(k 为常数,i=1,2,…,n)时取“=”号).事实上,由柯西不等式得:(a_1~2/b_1 a_2~2/b~2 … a_n~2/b_n)(b_1 b_2 … b_n)=  相似文献   

14.
张明远 《数学教学研究》2013,32(4):40-42,45
1柯西不等式的证明定理(柯西不等式)若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立.证法1(比较法)因为(a2+b2)(c2+d2)-(ac+bd)2  相似文献   

15.
1.问题试题(2013年湖南卷理科第10题)设a,b,c∈R,且满足a+2b+3c=6,则a^2+4b^2+9c^2的最小值为______.2.问题解决视角1柯西不等式法解法1:由柯西不等式得(a+2b+3c)^2=(1×a+1×2b+1×3c)^2≤(1^2+1^2+1^2)(a^2+4b^2+9c^2)=3(a^2+4b^2+9c^2),即a^2+4b^2+9c^2≥12,当且仅当a=2,b=1,c=2/3时等号成立.  相似文献   

16.
关于分式不等式的证明 ,人们已总结了不少方法 .本文利用柯西 (Cauchy)不等式的一种变式再给出一种证法 ,这种证法常被人们所忽视 ,然而它在证明一类分式不等式时却十分凑效 ,现介绍如下 ,以供参考 .柯西不等式的变式 设ai∈R ,bi∈R(i=1,2 ,… ,n) ,则    ( ni=1aibi) 2 ≤ ( ni=1ai) ( ni=1aib2 i) ,( )等号成立当且仅当b1=b2 =… =bn.由柯西不等式易知不等式 ( )成立 ,证明从略 .为书写方便 ,用 表示循环和 .例 1 已知x ,y ,z∈R ,k为常数 ,k∈R ,求证 xky z ykz x zkx …  相似文献   

17.
设ai、bi∈R(i=1,2,…,n),则(n∑i=1a2i·n∑i=1b2i≥(n∑i=1aibi)2),等号当且仅当(a1/b1=a2/b2)=…=an/bn时成立,这就是著名的柯西不等式.若在此不等式中作如下代换:令ai=(√xi),bi=(√yi),即得如下定理:  相似文献   

18.
众所周知,著名的算术──几何平均值不等式、柯西不等式有着十分广泛的应用,许多书刊都进行了深入研究.然于国内的书刊似乎很少见到专文研究Aczel不等式应用的文章,其实Aczel不等式的应用也很广泛,它是一批新老不等式的综合.一、Aczel不等式定理设a、a_2∈R,b、b_i∈R(i=1,2,…,当且仅当a_i/b_i=a/b(i=1,2,…,n)时时取等号.证明设A=a~2-sunfromi=1tona_i~2,B=ab-sumfromi=1tona_ib_i,构造二次函数∴抛物线y=f(x)与x轴有交点,则a_i/b_i=a/b时(1)取等论.推论设a、a_i∈R,b、b_i∈R(i=1,2,当且仅当a_i/b_i=a/b(i=1,2,…,n)时等号成…  相似文献   

19.
文[1]将一个不等式推广为: 定理1设*0(1,2,,),2,iainnmN>=澄L且1niiSa==,则有11111mnnmiiiiiaaSan-==--邋.(1) 本文中“”的等号成立均当且仅1a= 2naa==L.以下略. 记()1nttiiSa==,文[2]给出了不等式(1)的一个指数推广: 定理2 设12,,,(2)naaanL,P皆为正实数,则对任意非负实数q,有 ()()11pqqnippiiaSSan+=--. (2) 本刊文[3]将不等式(1)推广为: 定理3 设0(1,2,,),2,iainn>=矻 *,mkN,且mk>,则有 111()(1)mnnmkiikkiiiaaSan-==--邋. (3) 本文引入两个参数,cb,将不等式(2)进一步推广为: 定理4 设,,,,(1,2,iicbpacbaRi+-? ,L…  相似文献   

20.
柯西不等式:(a1b1+a2b2+…+anbn)^2≤(a1^2+a2^2+…+an^2)(b1^2+b2^2+…+bn^2)(当且仅当b1/a1=b2/a2=b3/a3=…=bn/an时,等号成立)是一个重要的不等式,其结构和谐、形式优美、应用广泛,是高考考查的热点.本文举例说明柯西不等式在求值、求最值、证明不等式及求参数的范围等方面的应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号