首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Visualizing single DNA dynamics in flow provides a wealth of physical insights in biophysics and complex flow study. However, large signal fluctuations, generated from diversified conformations, deformation history dependent dynamics and flow induced stochastic tumbling, often frustrate its wide adoption in single molecule and polymer flow study. We use a hybrid field microfluidic (HFM) approach, in which an electric field is imposed at desired locations and appropriate moments to balance the flow stress on charged molecules, to effectively regulate the initial conformations and the deformation dynamics of macromolecules in flow. With λ-DNA and a steady laminar shear flow as the model system, we herein studied the performance of HFM on regulating DNA trapping, relaxation, coil-stretch transition, and accumulation. DNA molecules were found to get captured in the focused planes when motions caused by flow, and the electric field were balanced. The trapped macromolecules relaxed in two different routes while eventually became more uniform in size and globule conformations. When removing the electric field, the sudden stretching dynamics of DNA molecules exhibited a more pronounced extension overshoot in their transient response under a true step function of flow stress while similar behaviors to what other pioneering work in steady shear flow. Such regulation strategies could be useful to control the conformations of other important macromolecules (e.g., proteins) and help better reveal their molecular dynamics.  相似文献   

2.
We examined the performance of three microfluidic devices for stretching DNA. The first device is a microchannel with a contraction, and the remaining two are the modifications to the first. The modified designs were made with the help of computer simulations [C. C. Hsieh and T. H. Lin, Biomicrofluidics 5(4), 044106 (2011) and C. C. Hsieh, T. H. Lin, and C. D. Huang, Biomicrofluidics 6, 044105 (2012)] and they were optimized for operating with electric field. In our experiments, we first used DC electric field to stretch DNA. However, the experimental results were not even in qualitative agreement with our simulations. More detailed investigation revealed that DNA molecules adopt a globular conformation in high DC field and therefore become more difficult to stretch. Owing to the similarity between flow field and electric field, we turned to use flow field to stretch DNA with the same devices. The evolution patterns of DNA conformation in flow field were found qualitatively the same as our prediction based on electric field. We analyzed the maximum values, the evolution and the distributions of DNA extension at different Deborah number in each device. We found that the shear and the hydrodynamic interaction have significant influence on the performance of the devices.  相似文献   

3.
Electroosmotic flow (EOF) with two or more fluids is commonly encountered in various microfluidics applications. However, no investigation has hitherto been conducted to investigate the hysteretic or flow direction-dependent behavior during the displacement flow of solutions with dissimilar ionic species. In this investigation, electroosmotic displacement flow involving dissimilar ionic solutions was studied experimentally through a current monitoring method and numerically through finite element simulations. The flow hysteresis can be characterized by the turning and displacement times; turning time refers to the abrupt gradient change of current-time curve while displacement time is the time for one solution to completely displace the other solution. Both experimental and simulation results illustrate that the turning and displacement times for a particular solution pair can be directional-dependent, indicating that the flow conditions in the microchannel are not the same in the two different flow directions. The mechanics of EOF hysteresis was elucidated through the theoretical model which includes the ionic mobility of each species, a major governing parameter. Two distinct mechanics have been identified as the causes for the EOF hysteresis involving dissimilar ionic solutions: the widening/sharpening effect of interfacial region between the two solutions and the difference in ion concentration distributions (and thus average zeta potentials) in different flow directions. The outcome of this investigation contributes to the fundamental understanding of flow behavior in microfluidic systems involving solution pair with dissimilar ionic species.  相似文献   

4.
There is currently a growing interest in control of stretching of DNA inside nanoconfined regions due to the possibility to analyze and manipulate single biomolecules for applications such as DNA mapping and barcoding, which are based on stretching the DNA in a linear fashion. In the present work, we couple Finite Element Methods and Monte Carlo simulations in order to study the conformation of DNA molecules confined in nanofluidic channels with neutral and charged walls. We find that the electrostatic forces become more and more important when lowering the ionic strength of the solution. The influence of the nanochannel cross section geometry is also studied by evaluating the DNA elongation in square, rectangular, and triangular channels. We demonstrate that coupling electrostatically interacting walls with a triangular geometry is an efficient way to stretch DNA molecules at the scale of hundreds of nanometers. The paper reports experimental observations of λ-DNA molecules in poly(dimethylsiloxane) nanochannels filled with solutions of different ionic strength. The results are in good agreement with the theoretical predictions, confirming the crucial role of the electrostatic repulsion of the constraining walls on the molecule stretching.  相似文献   

5.
The “channeling hypothesis” of DNA electrophoresis in sparse, ordered arrays of posts predicts that the DNA will move through the array relatively unhindered if (i) the spacing between the posts is larger than the DNA coil and (ii) the electric field lines are straight. We tested this hypothesis by studying the electrophoretic separation of a small plasmid DNA (pUC19, 2686 base pairs) and a large, linear DNA (λ-DNA, 48 500 base pairs) in a hexagonal array of 1 μm diameter posts with a pitch of 7 μm. At low electric field strengths, these DNAs are separated due to the long-lived, rope-over-pulley collisions of λ-DNA with the posts. The resolution is lost as the electric field increases due to the onset of channeling by the λ-DNA. Using a diffusive model, we show that channeling arises at low electric fields due to the finite size of the array. This channeling is not intrinsic to the system and is attenuated by increasing the size of the array. Higher electric fields lead to intrinsic channeling, which is attributed to the disparate time scales for a rope-over-pulley collision and transverse diffusion between collisions. The onset of channeling is a gradual process, in agreement with extant Brownian dynamics simulation data. Even at weak electric fields, the electrophoretic mobility of λ-DNA in the array is considerably higher than would be expected if the DNA frequently collided with the posts.  相似文献   

6.
Investigation of single molecule DNA dynamics in confined environments has led to important applications in DNA analysis, separation, and sequencing. Here, we studied the electrophoretic transport of DNA molecules through nanochannels shorter than the DNA contour length and calculated the associated translocation time curves. We found that the longer T4 DNA molecules required a longer time to traverse a fixed length nanochannel than shorter λ DNA molecules and that the translocation time decreased with increasing electric field which agreed with theoretical predictions. We applied this knowledge to design an asymmetric electric pulse and demonstrate the different responses of λ and T4 DNA to the pulses. We used Brownian dynamics simulations to corroborate our experimental results on DNA translocation behaviour. This work contributes to the fundamental understanding of polymer transport through nanochannels and may help in designing better separation techniques in the future.  相似文献   

7.
Electrorotation is widely used for characterization of biological cells and materials using a rotating electric field. Generally, multiphase AC electric fields and quadrupolar electrode configuration are needed to create a rotating electric field for electrorotation. In this study, we demonstrate a simple method to rotate dielectrophoretically trapped microparticles using a stationary AC electric field. Coplanar interdigitated electrodes are used to create a linearly polarized nonuniform AC electric field. This nonuniform electric field is employed for dielectrophoretic trapping of microparticles as well as for generating electroosmotic flow in the vicinity of the electrodes resulting in rotation of microparticles in a microfluidic device. The rotation of barium titanate microparticles is observed in 2-propanol and methanol solvent at a frequency below 1 kHz. A particle rotation rate as high as 240 revolutions per minute is observed. It is demonstrated that precise manipulation (both rotation rate and equilibrium position) of the particles is possible by controlling the frequency of the applied electric field. At low frequency range, the equilibrium positions of the microparticles are observed between the electrode edge and electrode center. This method of particle manipulation is different from electrorotation as it uses induced AC electroosmosis instead of electric torque as in the case of electrorotation. Moreover, it has been shown that a microparticle can be rotated along its own axis without any translational motion.  相似文献   

8.
In this paper, we demonstrate for the first time that insulative dielectrophoresis can induce size-dependent trajectories of DNA macromolecules. We experimentally use λ (48.5 kbp) and T4GT7 (165.6 kbp) DNA molecules flowing continuously around a sharp corner inside fluidic channels with a depth of 0.4 μm. Numerical simulation of the electrokinetic force distribution inside the channels is in qualitative agreement with our experimentally observed trajectories. We discuss a possible physical mechanism for the DNA polarization and dielectrophoresis inside confining channels, based on the observed dielectrophoresis responses due to different DNA sizes and various electric fields applied between the inlet and the outlet. The proposed physical mechanism indicates that further extensive investigations, both theoretically and experimentally, would be very useful to better elucidate the forces involved at DNA dielectrophoresis. When applied for size-based sorting of DNA molecules, our sorting method offers two major advantages compared to earlier attempts with insulative dielectrophoresis: Its continuous operation allows for high-throughput analysis, and it only requires electric field strengths as low as ∼10 V∕cm.  相似文献   

9.
Conventionally, isotachophoresis (ITP) is used for separation of ionic samples according to their electrophoretic mobilities. We demonstrate that the scope of ITP applications may be extended toward particle concentration and separation. Owing to the distributions of electrolyte concentration and electric field inside a transition zone between two electrolytes, a number of different forces act on a small particle. As far as possible, we provide estimates for the order of magnitude of these forces and analyze their scaling with the particle size and the electric-field strength. Furthermore, we experimentally demonstrate that polymer beads of 5 μm diameter dispersed in a high mobility “leading” electrolyte are picked up and carried along by an ITP transition zone which is formed with a low mobility “trailing” electrolyte. By studying the particle positions and trajectories, we show that impurities in the electrolytes play a significant role in the experiments. Additionally, it is experimentally shown that different types of beads can be separated at an ITP transition zone. In particular, beads of 1 μm diameter are not carried along with the transition zone, in contrast to the 5 μm beads. The presented technique thus adds to the portfolio of electrokinetic transport, concentration, and separation methods in microfluidics.  相似文献   

10.
Using a mapping between a Rouse dumbbell model and fine-grained Monte Carlo simulations, we have computed the relaxation time of λ-DNA in a high ionic strength buffer confined in a nanochannel. The relaxation time thus obtained agrees quantitatively with experimental data [Reisner et al., Phys. Rev. Lett. 94, 196101 (2005)] using only a single O(1) fitting parameter to account for the uncertainty in model parameters. In addition to validating our mapping, this agreement supports our previous estimates of the friction coefficient of DNA confined in a nanochannel [Tree et al., Phys. Rev. Lett. 108, 228105 (2012)], which have been difficult to validate due to the lack of direct experimental data. Furthermore, the model calculation shows that as the channel size passes below approximately 100 nm (or roughly the Kuhn length of DNA) there is a dramatic drop in the relaxation time. Inasmuch as the chain friction rises with decreasing channel size, the reduction in the relaxation time can be solely attributed to the sharp decline in the fluctuations of the chain extension. Practically, the low variance in the observed DNA extension in such small channels has important implications for genome mapping.  相似文献   

11.
The radial and axial motions of electrons in the betatron are described by means of a potential function of forces. Previously reported conditions of equilibrium, stability and damping of oscillations are derived for the region of parabolic variation of the potential. Extension of the analysis to, non-parabolic regions gives an account of the injection in conventional instruments in better agreement with experiment, particularly in regard to higher voltages of injection.Space charge limitations are discussed with the help of the Laplacian of the potential of forces.By means of an additional radial electric field electrons can be introduced as in the magnetron, without any asymmetry inherent in the conventional betatron circumferential injector. The analysis of the conditions of equilibrium and stability, greatly facilitated in this case by the notion of potential, shows that no substantial improvement in space charge limitations can be expected and that the required variations between the flux linking the electron orbits and the magnetic and electric fields at the orbits are difficult to realize on account of their complexity and narrow tolerances. The X-ray output of a small experimental double yoke instrument was measured by a phototube multiplier viewing an irradiated fluorescent screen and gave evidence of multiple group electron capture.  相似文献   

12.
We study the behavior of single linear polyelectrolytes condensed by trivalent salt under the action of electric fields through computer simulations. The chain is unfolded when the strength of the electric field is stronger than a critical value. This critical electric field follows a scaling law against chain length, and the exponent of the scaling law is −0.77(1), smaller than the theoretical prediction, −3ν∕2 [R. R. Netz, Phys. Rev. Lett. 90, 128104 (2003)], and the one obtained by simulations in tetravalent salt solutions, −0.453(3) [P.-Y. Hsiao and K.-M. Wu, J. Phys. Chem. B 112, 13177 (2008)]. It demonstrates that the scaling exponent depends sensitively on the salt valence. Hence, it is easier to unfold chains condensed by multivalent salt of a smaller valence. Moreover, the absolute value of chain electrophoretic mobility increases drastically when the chain is unfolded in an electric field. The fact that the mobility depends on electric field and on chain length provides a plausible way to impart chain-length dependence in free-solution electrophoresis via chain unfolding transition induced by electric fields. Finally, we show that, in addition to an elongated structure, a condensed chain can be unfolded into a U-shaped structure. The formation of this structure in our study is purely a result of the electric polarization, not of the elastohydrodynamics dominated in sedimentation of polymers.  相似文献   

13.
A microfluidic dynamic fluorescence-activated interface control system was developed for lab-on-a-chip applications. The system consists of a straight rectangular microchannel, a fluorescence excitation source, a detection sensor, a signal conversion circuit, and a high-voltage feedback system. Aqueous NaCl as conducting fluid and aqueous glycerol as nonconducting fluid were introduced to flow side by side into the straight rectangular microchannel. Fluorescent dye was added to the aqueous NaCl to work as a signal representing the interface position. Automatic control of the liquid interface was achieved by controlling the electroosmotic effect that exists only in the conducting fluid using a high-voltage feedback system. A LABVIEW program was developed to control the output of high-voltage power supply according the actual interface position, and then the interface position is modified as the output of high-voltage power supply. At last, the interface can be moved to the desired position automatically using this feedback system. The results show that the system presented in this paper can control an arbitrary interface location in real time. The effects of viscosity ratio, flow rates, and polarity of electric field were discussed. This technique can be extended to switch the sample flow and droplets automatically.  相似文献   

14.
Electrodeless dielectrophoresis is the best choice to achieve preconcentration of nanoparticles and biomolecules due to its simple, robust, and easy implementation. We designed a simple chip with microchannels and nano-slits in between and then studied the trapping of DNA in high conductive medium and low conductive medium, corresponding to positive and negative dielectrophoresis (DEP), respectively. It is very important to investigate the trapping in media with different conductivities since one always has to deal with the sample solutions with different conductivities. The trapping process was analyzed by the fluorescent intensity changes. The results showed that DNA could be trapped at the nano-slit in both high and low conductive media in a lower electric field strength (10 V/cm) compared to the existing methods. This is a significant improvement to suppress the Joule heating effect in DEP related experiments. Our work may give insight to researchers for DNA trapping by a simple and low cost device in the Lab-on-a-Chip system.  相似文献   

15.
The present work describes the operation and simulation of a microfluidic laminar-flow mixer. Diffusive mixing takes place between a core solution containing lipids in ethanol and a sheath solution containing aqueous buffer, leading to self assembly of liposomes. Present device architecture hydrodynamically focuses the lipid solution into a cylindrical core positioned at the center of a microfluidic channel of 125 × 125-μm2 cross-section. Use of the device produces liposomes in the size range of 100–300 nm, with larger liposomes forming at greater ionic strength in the sheath solution and at lower lipid concentration in the core solution. Finite element simulations compute the concentration distributions of solutes at axial distances of greater than 100 channel widths. These simulations reduce computation time and enable computation at long axial distances by utilizing long hexahedral elements in the axial flow region and fine tetrahedral elements in the hydrodynamic focusing region. Present meshing technique is generally useful for simulation of long microfluidic channels and is fully implementable using comsol Multiphysics. Confocal microscopy provides experimental validation of the simulations using fluorescent solutions containing fluorescein or enhanced green fluorescent protein.  相似文献   

16.
We report a new design of microfluidic chip (Multiple electric Field with Uniform Flow chip, MFUF chip) to create multiple electric field strengths (EFSs) while providing a uniform flow field simultaneously. MFUF chip was fabricated from poly-methyl methacrylates (PMMA) substrates by using CO2 laser micromachining. A microfluidic network with interconnecting segments was utilized to de-couple the flow field and the electric field (EF). Using our special design, different EFSs were obtained in channel segments that had an identical cross-section and therefore a uniform flow field. Four electric fields with EFS ratio of 7.9:2.8:1:0 were obtained with flow velocity variation of only 7.8% CV (coefficient of variation). Possible biological effect of shear force can therefore be avoided. Cell behavior under three EFSs and the control condition, where there is no EF, was observed in a single experiment. We validated MFUF chip performance using lung adenocarcinoma cell lines and then used the chip to study the electrotaxis of HSC-3, an oral squamous cell carcinoma cell line. The MFUF chip has high throughput capability for studying the EF-induced cell behavior under various EFSs, including the control condition (EFS = 0).  相似文献   

17.
Huang CT  Weng CH  Jen CP 《Biomicrofluidics》2011,5(4):44101-4410111
Particle focusing in microfluidic devices is a necessary step in medical applications, such as detection, sorting, counting, and flow cytometry. This study proposes a microdevice that combines insulator-based and metal-electrode dielectrophoresis for the three-dimensional focusing of biological cells. Four insulating structures, which form an X pattern, are employed to confine the electric field in a conducting solution, thereby creating localized field minima in the microchannel. These electrodes, 56-μm-wide at the top and bottom surfaces, are connected to one electric pole of the power source. The electrodes connected to the opposite pole, which are at the sides of the microchannel, have one of three patterns: planar, dual-planar, or three-dimensional. Therefore, low-electric-field regions at the center of the microchannel are generated to restrain the viable HeLa cells with negative dielectrophoretic response. The array of insulating structures aforementioned is used to enhance the performance of confinement. According to numerical simulations, three-dimensional electrodes exhibit the best focusing performance, followed by dual-planar and planar electrodes. Experimental results reveal that increasing the strength of the applied electric field or decreasing the inlet flow rate significantly enhances focusing performance. The smallest width of focusing is 17 μm for an applied voltage and an inlet flow rate of 35 V and 0.5 μl/min, respectively. The effect of the inlet flow rate on focusing is insignificant for an applied voltage of 35 V. The proposed design retains the advantages of insulator-based dielectrophoresis with a relatively low required voltage. Additionally, complicated flow controls are unnecessary for the three-dimensional focusing of cells.  相似文献   

18.
马耀峰  王冠孝  张佑印 《资源科学》2008,30(11):1747-1753
借用空间场理论的场能、位势、空间场的地域结构等分析方法,以四川省为研究对象,分析了1997年~2001年和2002年~2006年两个时间断面入境旅游流的集聚场能和辐射场能以及相对位势和绝对位势,分别构建了两个时间断面入境旅游流空间场的地域结构,在此基础上对两个时期内四川省入境旅游流的集聚效应和辐射效应进行对比分析,结果显示:四川省入境旅游流的空间场效应有增强的趋势,且其集聚效应明显强于辐射效应;多省市典型区域内都有一个高等级场能中心,广东、北京、上海、云南、陕西、江苏五省市是四川省跨区域旅游合作的重点地域,加强与环渤海区域的旅游通道建设,是四川省实现旅游流空间流向合理调整与流量结构优化的关键。  相似文献   

19.
In this paper, we study characteristics of polymers (methylcellulose, hypromellose ((hydroxypropyl)methyl cellulose), poly(vinylpyrrolidone), and poly(vinyl alcohol)) with different chemical structures for microchip electrophoresis of non-denatured protein samples in a plastic microchip made of poly(methyl methacrylate) (PMMA). Coating efficiency of these polymers for controlling protein adsorption onto the channel surface of the plastic microchip, wettability of the PMMA surface, and electroosmotic flow in the PMMA microchannels in the presence of these polymers were compared. Also relative electrophoretic mobility of protein samples in solutions of these polymers was studied. We showed that when using low polymer concentrations (lower than the polymer entanglement point) where the sieving effect is substantially negligible, the interaction of the samples with the polymer affected the electrophoretic mobility of the samples. This effect can be used for achieving better resolution in microchip electrophoresis of protein samples.  相似文献   

20.
We develop an approximation for the probability of optically resolving two fluorescent labels on the backbone of a DNA molecule confined in a nanochannel in the Odijk regime as a function of the fluorescence wavelength, channel size, and the properties of the DNA (persistence length and effective width). The theoretical predictions agree well with equivalent data produced by Monte Carlo simulations of a touching wormlike bead model of DNA in a high ionic strength buffer. Although the theory is only strictly valid in the limit where the effective width of the nanochannel is small compared with the persistence length of the DNA, simulations indicate that the theoretical predictions are reasonably accurate for channel widths up to two-thirds of the persistence length. Our results quantify the conjecture that DNA barcoding has kilobase pair resolution-provided the nanochannel lies in the Odijk regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号