首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
正关于概率的题型一直是高考和数学竞赛的重点内容.本文尝试构造离散型随机变量ξ的概率分布列体现概率在非概率题,如求最值、求值域、证明不等式等方面的应用.离散型随机变量ξ的方差D(ξ)=∑i=1n(ξi-E(ξ))2?pi=Eξ~2-(Eξ)~2≥0,当且仅当ξ服从退化分布时等号成立,即ξ_1=ξ_2=?=ξ_n时,Eξ~2=(Eξ)~2成立.1求最值例1(2013年高考湖南卷(理)第10题)已知a,b,c∈R,  相似文献   

2.
离散型随机变量ξ、分布列、期望Eξ及方差Dξ本属概率统计知识,然而根据Dξ=Eξ~2-(Eξ)~2≥0却可广泛应用于求解不等式问题之中.不等式中经常与"1"密切联系,而离散型随机变量的概率之和也为1,这为我们解相关问题创造了构建分布列的条件,从而能得出绝妙的求解方法.其解题模式为构造随机变量ξ分布列  相似文献   

3.
在文[1]中,王志进,程美老师给出了竞赛不等式的创新证法——向量内积法.笔者通过研究发现一种新证法——利用 Eξ~2≥(Eξ)~2证明不等式竞赛题.因为若随机变量ξ的概率分布为:则方差 Dξ=p_1(x_1-Eξ)~2 p_2(x_2-Eξ)~2 … p_n(x_n-Eξ)~2 …=Eξ~2-(Eξ)~2≥0(*)通过构造随机变量ξ的概率分布,利用(*)式可以全解文[1]中的五个例题.例1 (第24届全苏数学竞赛试题)如果  相似文献   

4.
离散型随机变量的分布是现行新教材高三概率部分非常重要的内容,以分布列为基础的随机变量ξ的期望与ξ2的期望具有不等的关系Eξ2≥(Eξ)2,就是这个矩不等式,把随机数学的概率与确定性数学的不等式有机的结合起来,这充分显示出数学的统一性,体现了数学的和谐美.分式的最值求解以及分式不等式的证明是国内外各级数学竞赛的重点考查内容.灵活构造分布列,运用矩不等式Eξ2≥(Eξ)2,可巧妙求解一类分式不等式竞赛题.  相似文献   

5.
根据方差的定义可以推导如下公式:D(ξ)=E(ξ-E(ξ))2=E(ξ2-2ξE(ξ)+(E(ξ))2)=E(ξ2)-2(E(ξ))2+(E(ξ))2=E(ξ2)-(E(ξ))2.因为D(ξ)≥0,所以E(ξ2)≥(E(ξ))2.在求含多元变量最值的题目中,可以根据题目结构特征,巧妙的构造离散型随机变量的概率分布列,利用E(ξ2)≥(E(ξ))2解决问题.例1已知a,b,c∈R,a+2b+3c=6,则a2+4b2+9c2的最小值为.  相似文献   

6.
一、要点分析1.随机变量若随机试验的结果可用一个变量表示,则这样的变量叫作随机变量,常用希腊字母ξ、η等表示.(1)随机变量的实质是随机试验结果的函数,它的自变量是随机试验的结果(是一个随机事件,不是量,更不是数);(2)随机变量的取值在试验前不可知,只有试验后才能知道;(3)随机变量的取值有时是人为规定的,如对于随机试验“掷一枚硬币”,我们用随机变量ξ=1表示随机事件“出现正面”,ξ=0表示“出现反面”.2.离散型随机变量的分布列离散型随机变量ξ可能取得值为x1x2x3…,而取xi(i=1、2…)的概率为Pi.下图表格叫ξ的概率分布列,简称分…  相似文献   

7.
在文[1]中,给出了竞赛不等式的创新证法——向量内积法.笔者通过研究发现一种新证法——利用Eξ^2≥(Eξ)^2证明不等式竞赛题.因为若随机变量ξ的概率分布为:[第一段]  相似文献   

8.
命题设随机变量ξ的概率分布为P(ξ=k)=qk-1p(其中0相似文献   

9.
Eξ,Dξ分别为随机变量ξ的数学期望与方差.由Dξ=E(-Eξ)2=Eξ2-(Eξ)2≥0,知Eξ2≥(Eξ)2(*),当且仅当ξ可能取的值都相等时取等号.构造随机变量ξ的分布列,利用(*)式解题,方法新颖,运算简便.下面举例说明.一、求最值例1(2005年高中联赛)使关于x的不等式x-槡3+6槡-x≥k有解的实数k的最大值是()  相似文献   

10.
设随机变量ξ的概率分布为:则有如下性质:(1)0≤A≤1(i=1,2,…,n,…)(2)p1+p2+…+pn+…=1(3)方差Dξ=P1(x1-Eξ)2+p2(x2-Eξ)2+…+pn(xn-Eξ)2+…=Eξ2-(Eξ)2≥0(4)若Pi>0,(i=1,2,…,n),则方差Dξ=0的充要条件是x1=x2=…=xn=…利用上述性质可以解决非概率统计中的一些问题.1证明恒等式  相似文献   

11.
概率是新课程中的热点内容,在概率教学中,适当说明构造概率模型在解题中的运用,体现概率与其它数学内容之间的紧密联系,对增强学生的学习兴趣,加深学生对概率知识的理解,都是很有裨益的.最值问题是中学数学常见问题,文[1]利用向量简捷巧妙的解决了一类最值问题,本文将另辟蹊径,利用一个概率定理求此类最值,以此展示解决此类问题的概率视角,希望对读者有所启发.定理设离散型随机变量ξ的分布列为P(ξ=xk)=Pk,k=1,2,…,n,则Eξ2≥(Eξ)2,当且仅当x1=x2=…=xk=Eξ时等式成立.证明Eξ2-(Eξ)2=∑k=n1x2k·Pk-(Eξ)2=∑k=n1(xk-Eξ)2·Pk≥0…  相似文献   

12.
徐双芬 《新高考》2011,(3):39-40
求随机变量ξ的数学期望,是考查概率知识的一个基本问题,看上去简单,但做起来有时深感麻烦,需要先列出随机变量ξ的概率分布列,再利用公式(?)进行计算,由于计算量大,经常会出现运算错误,甚至半途而废.我们知道随机变量ξ具有线性性质E(aξ+b)=aEξ+b,特别地,若ξ=(?),则Eξ=(?)Eξ_i,本文试图利用随机变量的线性性质,把复杂随机变量的Eξ分解为若干个简单随机变量的Eξ_i之和来求,把不服从规则分布的随机变量的Eξ转化成服从规则分布的随  相似文献   

13.
Eξ,Dξ分别为随机变量ξ的数学期望与方差.由Dξ=E(ξ-Eξ)2=Eξ2-(Eξ)2≥0,知Eξ2≥(Eξ)2(*),当且仅当ξ可能取的值都相等时取等号. 构造随机变量ξ的分布列,利用(*)式可以巧求下面一类题型的最小值.  相似文献   

14.
在概率与统计中,我们有时需求离散型随机变量在它的一切取值中,取什么值的概率最大. 若随机变量服从二项分布,解这类题目有一个较简便的途径,我们先从理论谈起. 一般地,如果ξ~B(n,p),其中0相似文献   

15.
对于一些求最值和证明不等式问题,尤其在一些竞赛题中,如果我们根据给出的条件及分式的结构,巧妙的构造随机变量的分布列,然后利用期望的性质Eξ2≥(Eξ)2,可以非常迅速地使问题得以解决.  相似文献   

16.
对于离散型随机变量ξ的期望,教材给出:Eξ=x_1p_1 x_2p_2 … x_np_n …和E(aξ b)=aEξ b.P16页习题2:一个盒子里装有5张卡片,分别标有数2,3,4,5,6;另一个盒子里则装有分别标有3,4,5,6,7五个数的5张卡片,现从两个盒子里各取一张卡片,求所取出的两张卡片的数之和的期望。学生在解答时发现:  相似文献   

17.
<正>Eξ,Dξ分别为随机变量ξ的数学期望与方差.由Dξ=E(ξ-Eξ)2=Eξ2-(Eξ)2≥0,知Eξ2≥(Eξ)2(*),当且仅当ξ可能取的值都相等时取等号.构造随机变量ξ的分布列,利用(*)式可以巧求一类题型的最小值.例1已知x,y,z∈R+,且2x+4y+7z=5,求2x+y4+7z的最小值.解构造ξ的分布列为  相似文献   

18.
<正>2014年上海高考理科第13题:某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分.若E(ξ)=4.2,则小白得5分的概率至少为.1解法探究解设小白得i分的概率为pi(i=1,2,3,4,5),因为E(ξ)=4.2,所以p1+2p2+3p3+4p4+5p5=4.2,又p1+p2+p3+p4+p5=1,代人得p2+2p3+3p4+4p5=  相似文献   

19.
高中数学教科书新版第三册(选修Ⅱ)比原来的修订本新增加随机变量的几何分布,但书中只给出了结论:(1)Eξ=1/p1,(2)Dξ=(1-p)/p~2,而未加以证明.本文给出证明,并用于解题.  相似文献   

20.
求某随机变量的数学期望,通常是先求出分布列,再用定义求解.但对某些问题,运用数学期望的如下性质:设ξi(i =1,2,…,n)为n个随机变量,则E(ξ1 ξ2 … ξn) = Eξ1 Eξ2 … Eξn进行求解,能够避免繁琐的计算,达到化繁为简、化难为易的目的.图1【例 1】 某先生居住在城镇的 A 处,准备开车到单位 B 处上班,若该地各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图1.(例如:A→C→D算作两个路程,路段AC发生堵车事件的概率为110,路段CD发生堵车事件的概率为115)若记路线A→C→F→B中遇…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号