首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Latent growth modeling (LGM) is a popular and flexible technique that may be used when data are collected across several different measurement occasions. Modeling the appropriate growth trajectory has important implications with respect to the accurate interpretation of parameter estimates of interest in a latent growth model that may impact educational policy decisions. A Monte Carlo simulation study was conducted to examine the accuracy of six information-based criteria (i.e., AIC, CAIC, AICC, BIC, nBIC, and HQIC) when selecting among various growth trajectories modeled using LGM under different sample size, number of time points, and growth trajectory scenarios. The accuracy of the information criteria generally improved as sample size increased. The cubic and linear growth models were distinguished most accurately by the information criteria. All of the nonlinear models were more easily distinguished as the number of time points increased. The comparative performance of the six information criteria was dependent upon the manipulated conditions. Implications of the findings are discussed.  相似文献   

2.
This article applies Bollen’s (1996) 2-stage least squares/instrumental variables (2SLS/IV) approach for estimating the parameters in an unconditional and a conditional second-order latent growth model (LGM). First, the 2SLS/IV approach for the estimation of the means and the path coefficients in a second-order LGM is derived. An empirical example is then used to show that 2SLS/IV yields estimates that are similar to maximum likelihood (ML) in the estimation of a conditional second-order LGM. Three subsequent simulation studies are then presented to show that the new approach is as accurate as ML and that it is more robust against misspecifications of the growth trajectory than ML. Together, these results suggest that 2SLS/IV should be considered as an alternative to the commonly applied ML estimator.  相似文献   

3.
This study investigated the optimal strategy for model specification search under the latent growth modeling (LGM) framework, specifically on searching for the correct polynomial mean or average growth model when there is no a priori hypothesized model in the absence of theory. In this simulation study, the effectiveness of different starting models on the search of the true mean growth model was investigated in terms of the mean and within-subject variance-covariance (V-C) structure model. The results showed that specifying the most complex (i.e., unstructured) within-subject V-C structure with the use of LRT, ΔAIC, and ΔBIC achieved the highest recovery rate (>85%) of the true mean trajectory. Implications of the findings and limitations are discussed.  相似文献   

4.
Because random assignment is not possible in observational studies, estimates of treatment effects might be biased due to selection on observable and unobservable variables. To strengthen causal inference in longitudinal observational studies of multiple treatments, we present 4 latent growth models for propensity score matched groups, and evaluate their performance with a Monte Carlo simulation study. We found that the 4 models performed similarly with respect to model fit, bias of parameter estimates, Type I error, and power to test the treatment effect. To demonstrate a multigroup latent growth model with dummy treatment indicators, we estimated the effect of students changing schools during elementary school years on their reading and mathematics achievement, using data from the Early Childhood Longitudinal Study Kindergarten Cohort.  相似文献   

5.
Recent advances have enabled diagnostic classification models (DCMs) to accommodate longitudinal data. These longitudinal DCMs were developed to study how examinees change, or transition, between different attribute mastery statuses over time. This study examines using longitudinal DCMs as an approach to assessing growth and serves three purposes: (1) to define and evaluate two reliability measures to be used in the application of longitudinal DCMs; (2) through simulation, demonstrate that longitudinal DCM growth estimates have increased reliability compared to longitudinal item response theory models; and (3) through an empirical analysis, illustrate the practical and interpretive benefits of longitudinal DCMs. A discussion describes how longitudinal DCMs can be used as practical and reliable psychometric models when categorical and criterion‐referenced interpretations of growth are desired.  相似文献   

6.
Growth mixture modeling (GMM) is a useful statistical method for longitudinal studies because it includes features of both latent growth modeling (LGM) and finite mixture modeling. This Monte Carlo simulation study explored the impact of ignoring 3 types of time series processes (i.e., AR(1), MA(1), and ARMA(1,1)) in GMM and manipulated the separation of the latent classes, the strength of the time series process, and whether the errors conformed to the time series process in 1 or 2 latent classes. The results showed that omitting time series processes resulted in more serious bias in parameter estimation as the distance between classes increased. However, when the class distances were small, ignoring time series processes contributed to the selection of the correct number of classes. When the GMM models correctly specified the time series process, only models with an AR(1) time series process produced unbiased parameter estimates in most conditions. It was also found that among design factors manipulated, the distance between classes prominently affected the identification of the number of classes and parameter estimation.  相似文献   

7.
This simulation study examined the performance of the curve-of-factors model (COFM) when autocorrelation and growth processes were present in the first-level factor structure. In addition to the standard curve-of factors growth model, 2 new models were examined: one COFM that included a first-order autoregressive autocorrelation parameter, and a second model that included first-order autoregressive and moving average autocorrelation parameters. The results indicated that the estimates of the overall trend in the data were accurate regardless of model specification across most conditions. Variance components estimates were biased across many conditions but improved as sample size and series length increased. In general, the two models that incorporated autocorrelation parameters performed well when sample size and series length were large. The COFM had the best overall performance.  相似文献   

8.
Growth curve modeling provides a general framework for analyzing longitudinal data from social, behavioral, and educational sciences. Bayesian methods have been used to estimate growth curve models, in which priors need to be specified for unknown parameters. For the covariance parameter matrix, the inverse Wishart prior is most commonly used due to its proper and conjugate properties. However, many researchers have pointed out that the inverse Wishart prior might not work as expected. The purpose of this study is to investigate the influence of the inverse Wishart prior and compare it with a class of separation-strategy priors on the parameter estimates of growth curve models. In this article, we illustrate the use of different types of priors with 2 real data analyses, and then conduct simulation studies to evaluate and compare these priors in estimating both linear and nonlinear growth curve models. For the linear model, the simulation study shows that both the inverse Wishart and the separation-strategy priors work well for the fixed effects parameters. For the Level 1 residual variance estimate, the separation-strategy prior performs better than the inverse Wishart prior. For the covariance matrix, the results are mixed. Overall, the inverse Wishart prior is suggested if the population correlation coefficient and at least 1 of the 2 marginal variances are large. Otherwise, the separation-strategy prior is preferred. For the nonlinear growth curve model, the separation-strategy priors work better than the inverse Wishart prior.  相似文献   

9.
This study introduces three growth modeling techniques: latent growth modeling (LGM), hierarchical linear modeling (HLM), and longitudinal profile analysis via multidimensional scaling (LPAMS). It compares the multilevel growth parameter estimates and potential predictor effects obtained using LGM, HLM, and LPAMS. The purpose of this multilevel growth analysis is to alert applied researchers to selected analytical issues that are required for consideration in decisions to apply one of these three approaches to longitudinal academic achievement studies. The results indicated that there were no significant distinctions on either mean growth parameter estimates or on the effects of potential predictors to growth factors at both the student and school levels. However, the study also produced equivocal findings on the statistical testing of variance and covariance growth parameter estimates. Other practical issues pertaining to the three growth modeling methods are also discussed.  相似文献   

10.
In practice, models always have misfit, and it is not well known in what situations methods that provide point estimates, standard errors (SEs), or confidence intervals (CIs) of standardized structural equation modeling (SEM) parameters are trustworthy. In this article we carried out simulations to evaluate the empirical performance of currently available methods. We studied maximum likelihood point estimates, as well as SE estimators based on the delta method, nonparametric bootstrap (NP-B), and semiparametric bootstrap (SP-B). For CIs we studied Wald CI based on delta, and percentile and BCa intervals based on NP-B and SP-B. We conducted simulation studies using both confirmatory factor analysis and SEM models. Depending on (a) whether point estimate, SE, or CI is of interest; (b) amount of model misfit; (c) sample size; and (d) model complexity, different methods can be the one that renders best performance. Based on the simulation results, we discuss how to choose proper methods in practice.  相似文献   

11.
The authors investigated 2 issues concerning the power of latent growth modeling (LGM) in detecting linear growth: the effect of the number of repeated measurements on LGM's power in detecting linear growth and the comparison between LGM and some other approaches in terms of power for detecting linear growth. A Monte Carlo simulation design was used, with 3 crossed factors (growth magnitude, number of repeated measurements, and sample size) and 1,000 replications within each cell condition. The major findings were as follows: For 3 repeated measurements, a substantial proportion of samples failed to converge in structural equation modeling; the number of repeated measurements did not show any effect on the statistical power of LGM in detecting linear growth; and the LGM approach outperformed both the dependent t test and repeated-measures analysis of variance (ANOVA) in terms of statistical power for detecting growth under the conditions of small growth magnitude and small to moderate sample size conditions. The multivariate repeated-measures ANOVA approach consistently underperformed the other tests.  相似文献   

12.
This simulation study focused on the power for detecting group differences in linear growth trajectory parameters within the framework of structural equation modeling (SEM) and compared the latent growth modeling (LGM) approach to the more traditional repeated-measures analysis of variance (ANOVA) approach. Several patterns of group differences in linear growth trajectories were considered. SEM growth modeling consistently showed higher statistical power for detecting group differences in the linear growth slope than repeated-measures ANOVA. For small group differences in the growth trajectories, large sample size (e.g., N > 500) would be required for adequate statistical power. For medium or large group differences, moderate or small sample size would be sufficient for adequate power. Some future research directions are discussed.  相似文献   

13.
Individual growth trajectories of psychological phenomena are often theorized to be nonlinear. Additionally, individuals’ measurement schedules might be unique. In a structural equation framework, latent growth curve model (LGM) applications typically have either (a) modeled nonlinearity assuming some degree of balance in measurement schedules, or (b) accommodated truly individually varying time points, assuming linear growth. This article describes how to fit 4 popular nonlinear LGMs (polynomial, shape-factor, piecewise, and structured latent curve) with truly individually varying time points, via a definition variable approach. The extension is straightforward for certain nonlinear LGMs (e.g., polynomial and structured latent curve) but in the case of shape-factor LGMs requires a reexpression of the model, and in the case of piecewise LGMs requires introduction of a general framework for imparting piecewise structure, along with tools for its automation. All 4 nonlinear LGMs with individually varying time scores are demonstrated using an empirical example on infant weight, and software syntax is provided. The discussion highlights some advantages of modeling nonlinear growth within structural equation versus multilevel frameworks, when time scores individually vary.  相似文献   

14.
Popular longitudinal models allow for prediction of growth trajectories in alternative ways. In latent class growth models (LCGMs), person-level covariates predict membership in discrete latent classes that each holistically define an entire trajectory of change (e.g., a high-stable class vs. late-onset class vs. moderate-desisting class). In random coefficient growth models (RCGMs, also known as latent curve models), however, person-level covariates separately predict continuously distributed latent growth factors (e.g., an intercept vs. slope factor). This article first explains how complex and nonlinear interactions between predictors and time are recovered in different ways via LCGM versus RCGM specifications. Then a simulation comparison illustrates that, aside from some modest efficiency differences, such predictor relationships can be recovered approximately equally well by either model—regardless of which model generated the data. Our results also provide an empirical rationale for integrating findings about prediction of individual change across LCGMs and RCGMs in practice.  相似文献   

15.
This study presents the random-effects rating scale model (RE-RSM) which takes into account randomness in the thresholds over persons by treating them as random-effects and adding a random variable for each threshold in the rating scale model (RSM) ( Andrich, 1978 ). The RE-RSM turns out to be a special case of the multidimensional random coefficients multinomial logit model (MRCMLM) ( Adams, Wilson, & Wang, 1997 ) so that the estimation procedures for the MRCMLM can be directly applied. The results of the simulation indicated that when the data were generated from the RSM, using the RSM and the RE-RSM to fit the data made little difference: both resulting in accurate parameter recovery. When the data were generated from the RE-RSM, using the RE-RSM to fit the data resulted in unbiased estimates, whereas using the RSM resulted in biased estimates, large fit statistics for the thresholds, and inflated test reliability. An empirical example of 10 items with four-point rating scales was illustrated in which four models were compared: the RSM, the RE-RSM, the partial credit model ( Masters, 1982 ), and the constrained random-effects partial credit model. In this real data set, the need for a random-effects formulation becomes clear.  相似文献   

16.
Latent growth curves within developmental structural equation models   总被引:7,自引:1,他引:7  
This report uses structural equation modeling to combine traditional ideas from repeated-measures ANOVA with some traditional ideas from longitudinal factor analysis. A longitudinal model that includes correlations, variances, and means is described as a latent growth curve model (LGM). When merged with repeated-measures data, this technique permits the estimation of parameters representing both individual and group dynamics. The statistical basis of this model allows hypothesis testing of various developmental ideas, including models of alternative dynamic functions and models of the sources of individual differences in these functions. Aspects of these latent growth models are illustrated with a set of longitudinal WISC data from young children and by using the LISREL V computer program.  相似文献   

17.
Ignoring a level can have a substantial impact on the conclusions of a multilevel analysis. For intercept-only models and for balanced data, we derive these effects analytically. For more complex random intercept models or for unbalanced data, a simulation study is performed. Most important effects concern estimates and corresponding standard errors of the variance parameters at adjacent levels and of the coefficients of the predictors at the ignored and bordering levels. Therefore, we conclude that if the researcher is interested in a specific level, she/he should account for both the upper and lower level. Conclusions are illustrated using empirical data from educational research.  相似文献   

18.
Latent growth curve mediation models are increasingly used to assess mechanisms of behavior change. For latent growth mediation model, like any another mediation model, even with random treatment assignment, a critical but untestable assumption for valid and unbiased estimates of the indirect effects is that there should be no omitted variable that confounds indirect effects. One way to address this untestable assumption is to conduct sensitivity analysis to assess whether the inference about an indirect effect would change under varying degrees of confounding bias. We developed a sensitivity analysis technique for a latent growth curve mediation model. We compute the biasing effect of confounding on point and confidence interval estimates of the indirect effects in a structural equation modeling framework. We illustrate sensitivity plots to visualize the effects of confounding on each indirect effect and present an empirical example to illustrate the application of the sensitivity analysis.  相似文献   

19.
20.
This article investigates three types of stage-sequential growth mixture models in the structural equation modeling framework for the analysis of multiple-phase longitudinal data. These models can be important tools for situations in which a single-phase growth mixture model produces distorted results and can allow researchers to better understand population heterogeneity and growth over multiple phases. Through theoretical and empirical comparisons of the models, the authors discuss strategies with respect to model selection and interpreting outcomes. The unique attributes of each approach are illustrated using ecological momentary assessment data from a tobacco cessation study. Transitional discrepancy between phases as well as growth factors are examined to see whether they can give us useful information related to a distal outcome, abstinence at 6 months postquit. It is argued that these statistical models are powerful and flexible tools for the analysis of complex and detailed longitudinal data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号