首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>求递推数列的通项公式的方法较多,技巧性很强.本文主要探究形如a_(n+1)=pa_n+f(n)(p为常数,n∈N*)的递推数列通项公式的求法.一、引例例1已知数列{a_n}满足a_1=3,a_(n+1)=2a_n+5n+1(n∈N*),求该数列的通项公式.解(辅助数列法)由a_(n+1)=2a_n+5n+1,得a_(n+1)+5(n+1)+6=2(a_n+5n+6).(1)  相似文献   

2.
数列递推公式的意义:若已知数列的第一项a_1且任一项a_n与前一项a_(n-1)之间的关系可以用一个公式表示.类型1形如a_(n+1)=a_n+f(n).解法:把原递推公式转化为a_(n+1)-a_n=f(n),利用累加法(逐差相加法)求解.例1已知数列{a_n}满足a_1=1/2,a_(n+1)=  相似文献   

3.
定义:若数列{a_n}用递推公式给出:a_1=a,a_(n 1)=f(a_n)(n=1,2,…)则称{a_n}为递归数列,f为定义函数。当f为非线性函数时,称{a_n}为非线性递归数列。本文给出两类非线性递归数列通项公式的求法。一、递推公式为一次有理式的情形  相似文献   

4.
文[1]给出了合成数列{x_n}a_1,b_1,a_2,b_2,a_3,b_3,…的通项公式x_n=1/2[f(n 1/2) g(n/2)] (-1)~(n 1) 1/2[f(n 1/2)-g(n/2)]. 本文用三角函数给出合成数列{x_n}的又一通项公式,并举例说明这个公式的应用。定理如果数列{a_n}和{b_n}的通项分别为a_n=f(n),b_n=g(n),那么,数列{a_n}与{b_n}的合成数列{x_n}的通项公式为  相似文献   

5.
<正>通过递推关系求数列的通项公式,是高考的热点和难点.笔者在平时的数学学习和解题过程中不断总结、反思,针对如何处理出现在递推数列中的干扰项,构造出熟悉的新数列,归纳得到一些求通项公式方法,现叙述如下.一、a_(n+1)=qa_n+f(n)型数列对于满足a_(n+1)=qa_n+f(n)的数列{a_n},  相似文献   

6.
由递推公式求数列的通项,这个问题学生掌握起来是比较困难的。如何利用已经学过的知识,找出其间的规律,化难为易,是解决这种难题的关键。中学课本中等差数列和等比数列,其通项可以写成递推公式的形式。等差数列:a_n=a_(n-1)+d,(n>1);等比数列:a_n=a_(n-1)q,(n>1)。由这两个递推公式,反过来求其通项是很容易的。如果给出形如 a_(?)—a_n=a(a_n—a_(n-1)或形如 a_(n+1)—a_n=(a_n—a_(n-1)+b(其中 n≥1,a、b 是常数)的递推公式,那么如何求出已知数列的通项 a_n 呢?解决这种问题的方法分两个步骤:第一,把所给的递推公式先化成等差或等比数列  相似文献   

7.
在解决数列问题时,常常涉及到求通项问题.求通项方法繁多,下面着重谈谈递推法.一、已知一数列的和式为 S_n,求此数列通项 a_n.由 S_(n-1) a_n=S_n,便有 a_n=S_n-S_(n-1).但是,a_1不一定满足通项 a_n.因为 S_(n-1) a_n=S_n 表明第 n 项前不一定符合所求得的通项,由递推知,a_1不一定满足所求通项.那么,是否满足某一条件后,使得 a_1也满足所求得的通项呢?a_1究竟怎么确定呢?  相似文献   

8.
<正>在数列中有一类重要的递推数列{a_n},需要求它的通项公式,这类数列满足条件:a_1=α,a_2=β,且a_(n+2)=pa_(n+1)+qa_n(其中p,q均为常数).如何求其通项公式a_n呢?本文用三种不同解法加以阐述,以飨读者.一、构造法  相似文献   

9.
根据给出的数列的递推关系,求它的通项公式中,用特征方程求数列的通项公式,是非常有效的方法。例如,已知数列{a_n}具有关系a_1=3~(1/2),且a_(n+1)=1/2 a_n-3,求a_n的表达式,可用下面方法来解。∵a_(n+1)=1/2 a_n-3,把它两边同加上6,得a_(n+1)+6=1/2 a_n+3=1/2(a_n+6)。  相似文献   

10.
递推方法     
(本讲适合高中) 数列是初等数学的一个重要内容.在解数列问题时,经常会遇到下面一类题目: 已知:数列{a_n}满足a_1=2,a_2=3,a_(n+1)=3a_n-2a_(n-1). 求数列{a_n}的通项公式. 这种已知初始值和递推公式求通项公式的题目相当多,探讨它们解法的文章也相当  相似文献   

11.
给了数列的递推公式和初始值,起何求它的通项呢?下面通过例题说明求这类数列通项公式的一些基本思路和方法。例1 已知数列{a_n}的项满足: 求通项a_n。我们知道,数列的项a_n是自然数n的函数,递推式是一个循环方程, 实际上是未知数为a_n,a_(n-1)……a_2的函数方程组: 根据递推数列的这一本质特征,求通项a_n就是解方程组(*),求得未知函数a_n。  相似文献   

12.
2005年江西省普通高校招生考试《数学(文科)》试卷的第22题,是全卷的最后一道题,带有压轴性质.其题目是:“已知数列{a_n}的前n项和 S_n 满足 S_n-S_(n-2)=3×(-1/2)~(n-1)(n≥3),且 S_1=1,S_2=-3/2,求数列{a_n}的通项公式”.考试到条件 S_n-S_(n-2)=a_n a_(n-1),故这道题考题实质上是已知数列递推关系 a_n a_(n-1)=mf(n) k 和起始值 a_1,求数列{a_n}的通项公式的问题.此类题型在多年高考中屡见  相似文献   

13.
<正>要判断一个数列是否具有周期性或求一个数列的周期,主要方法是通过递推公式求出数列的前几项,观察得到规律或由递推公式发现规律。1.根据数列的周期性求某项的值例1已知数列{a_n}满足a_1=3,a_2=6,a_(n+2)=a_(n+1)-a_n,求a_(2017)。解析:由a_1=3,a_2=6,a_(n+2)=a_(n+1)-a_n,得  相似文献   

14.
我们研究这样一个数列:已知数列{a_n}的首项a_1>0,并且有递推公式a_(n+1)=1/2(a_n+k/a_n)(k>0).这是一个非线性的递推数列.这个递推数列的通项公式如何求法,便是本文所要研究的问题.欲求这个递推数列的通项公式,我们采用待定系数法.我们在上面递推公式的两边同加上一个待定常数α:  相似文献   

15.
<正>数列问题中由递推公式求通项公式的题目屡见不鲜,我们曾经学过一些方法,如累加累乘、配凑法等,但是这些方法能解决的题型有限,而且不一定就是最简单的.下面笔者为大家介绍两种方法:特征方程法和待定系数法.一、特征方程求通项公式先以一道题为例.例1已知a_(n+2)=5a_(n+1)-6a_n,a_1=0,a_2=1,求a_n.步骤1设特征方程x2=5x-6,其中x2=5x-6,其中x2对应a_(n+2),5x对应5a_(n+1),-6对应-6a_n.  相似文献   

16.
数列的通项公式揭示了这个数列的内在规律。中学教材中,对等差数列、等比数列作了重点介绍,本文想在此基础上作一些推广。首先我们定义:multiply from i=k to n f(i)=1(k>n) 定理一:在数列{a_n}中已知a_1且满足 a_n=f(n)a_(n-1)+g(n) (n=2,3,4…)则a_n=a multiply from i=2 to n f(i)+sum from i=2 to n[g(i) multiply from i=i to n-1 f(i+1)] 证明:1°n=2,右边=f(2)a_1+g(2)=a_2 2°假定当n=k时命题成立即  相似文献   

17.
<正>在数列问题中,求通项公式最常见的两种类型是:已知首项a_1,且满足a_(n+1)=a_n+f(n)或者a_(n+1)=a_(n)f(n),其所用的方法是累加法和累乘法.在教学实践中,笔者发现解决这两类问题,和可用同一种简洁的方法,即构造常数数列法,下面举例说明.一、a_(n+1)=a_n+f(n)型  相似文献   

18.
求递推数列的通项,在近几年高考中凸显地位,这类试题的求解,多是运用转化思想,将所给递推数列转化为等差数列、等比数列或其他特殊数列,下面笔者就几种常见类型举几例高考试题,并对其解法进行探讨、总结.例1数列{a_n}中a_1=2,a_(a 1)=a_n cn(c是常数,n∈N~*),且a_1,a_2,a_3成公比不为1的等比数列.(1)求c的值;(2)求{a_n}的通项公式.  相似文献   

19.
在中学数学中,逐差法(逐项相消法)常常用来求某些数列的前n项和以及求某些递推数列的通项公式。在数列求和时,如果可将数列的一般项a_k写成 a_b=λ〔f(k 1)-f(k)〕, ①其中λ为待定常数,而f(k)为k的函数,则可在①中令k=1、2、…、n,然后将这n个等式相加,于是数列{a_k}的前n项和即为 S_n=a_l a_2 … a_n =λ〔f(n 1)-f(1)〕②这里要说明的是,将数列的一般项a_k写成两项之差的目的是为了求和时等式右端的  相似文献   

20.
<正>数列的通项公式是高考重点考查的知识点之一,求数列通项公式的方法也很多,在具体的问题中选择最适当的方法来解决是重中之重。本文主要介绍用特征根法求数列通项公式。若常系数齐次线性递归数列的递归关系为:a_(n+k)=c_1a_(n+k-1_+c_2a_(n+k-2)+…+c_ka_n,则称方程xk=c_1xk=c_1x(k-1)+c_2x(k-1)+c_2x(k-2)+…+c_k为其特征方程,方程的根称为{a_n}的特征根。定理:如果x_1,x_2是递推关系a_n=  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号