首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
在△ABC中,由余弦定理有: c~2=a~2+b~2-2abcosC又据正弦定理有:a=2RsinA,b=2RsinB,c=2RsinC。代入上式化简得: sin~2C=sin~2A+sin~2B-2sinAsinBcosC(*) 上式揭示了三角形三内角之间的一个关系。虽得到容易,但用途广泛,现举例说明。  相似文献   

2.
我们在初中已学过正弦定理和余弦定理:在△ABC中,角A、B、C所对的边分别为a、b、c,其外接圆半径为R,则有 a/sinA=b/sinB=c/sinC=2R及 a~2=b~2+c~2-2bccosA. 应用正弦定理把余弦定理中的边都化为角,则有: sin~2A=sin~2B+sin~2C-2sinBsinCcosA. 可以证明当A+B+C=kπ,k为奇数时此式都成立。我们不妨把上式称为正——余弦定理。下面举例说明这个定理的应用。例1 求sin~210°+cos~240°+sin10°cos40°的值。  相似文献   

3.
定理 在△ABC中,3~(1/2)(sin~3A sin~3B sin~3C)≤3 cos~3A cos~3B cos~3C. (1)等号当且仅当△ABC为正三角形时成立。  相似文献   

4.
我们先来看一个测验题的解法在△ABC中,求证sin~2A+sin~2B-sin~2C=2·sinAsinB·cosC。证明左边=1/2(1-cos2A)+1/2(1-cos2B)-(1-cos~2C)=cos~2C-1/2(cos2A+cos2B)=cos~2C-cos(A+B)·cos(A-B)=cos~2C+cosC·cos(A-B)=cosC[cosC+cos(A-B)]=cosC2cos1/2(C+A-B)cos1/2(C-A+B)=2cosCcos1/2(180°-2B)cos(1/2)(180°-2A)=2cosCcos(90°-B)cos(90°-A)=2sinAsinBcosC=右边  相似文献   

5.
1991年3月,重庆第117中学何德岳老师发现了一个新的几何不等式:在△ABC中,有: sin~2 A/2+sin~2B/2+sin~2C/2 ≤1/4 3~(1/2)etg A/2etg B/2etg C/2etg.(1) 1992年10月,宁波大学陈计先生得到不等式(1)的一个加强形式:在△ABC中,有:  相似文献   

6.
已知a、b、c是△ABC的三条边,如果∠C=90°,那么a~2+b~2=c~2, (1)如果∠C≠90°,那么a~2=b~2+c~2-2bccosA, (2)由正弦定理, a=2RsinA,b=2RsinB,c=2RsinC分别代入(1),(2)可得 sin~2A+sin~2B=sin~2C, (3) sin~2A=sin~2B+sin~2C-2sinBsinCcosA。(4) 上面(1),(2)是我们熟知的勾股定理和余弦定理,而(3),(4)是由正弦定理推导出来的含角(不含边)的关系式,类似勾股定理和余弦定理(实际上是和勾股定理、余弦定理等价)的形式,不妨称之为“角形式的勾股定理和余弦定理”。应用这两个定理,可使某些数  相似文献   

7.
由正弦定理出发,我们可以得到如下定理:△ABC中,以sinA、SinB、sinC为边可以构造△A′B′C′。且△ABC∽A′B′C′,△A′B′C′外接圆直径为1。证明:设△ABC外接圆半径为R, sinA+sinB=1/2R (a+b)>1/2R·C=sinC。同理可证 sinA+sinC>sinB,sinB+sinC>sinA。因此以sinA、sinB、sinC为边可以构造△A′B′C′。由正弦定理 a/sinA=b/sinB=c/sinC,因此△ABC∽△A′B′C′,则A=A′,B=B′,C=C′。设△A′B′C′外接圆半径为R′,对△A′B′C′施行正弦定理,则sinA/sinA′=2R′=1。由这个定理出发,有下面的二个应用。一、关于三角形中一些恒等式和不等式的互证  相似文献   

8.
文[1]中给出了二倍角三角形的一个性质及其应用,作为该文的补充,今给出n倍角三角形的一个性质及其相应的一些推论。下面用A、B、C表示△ABC的三内角,以a、b、c分别表示它们的对边 定理 在△ABC中,若A=nB (n∈N),则 a~2=b~2 bc·sin(n-1)B/sinB 证明 在△ABC中,因A=nB,故C=180°-(n 1)B ∴sin~2B sinC·sin(n-1)B=sin~2B sin(n 1)B·sin(n-1)B =1/2(1-cos2B)-1/2(cos2nB-cos2B)  相似文献   

9.
1987年,苏化明未加证明地介绍了如下不等式链:在△ABC中,有 -cos2A-cos2B-cos2C ≤cosA+cosB+cosC ≤sinA/2+sinB/2+sinC/2 ≤3/2. (1) 杨学枝老师在文中给出了△ABC中的一个不等式: sin~2A/2+sin~2B/2+sin~2C/2≤1/4 (ctgB/2ctgC/2+ctgC/2ctgA/2+ctgA/2ctgB/2)~(1/2) (2)  相似文献   

10.
涉及三等分角线的又一定理   总被引:1,自引:0,他引:1  
莫勒定理是涉及三等分角线的著名定理,类比三角形的内心与旁心,可得到一个令人吃惊而又全然意外的结论: 定理如图,设AE和AF,BD和BF,CD和CE分别是∠A,∠QBC,∠PCB的三等分线,则△DEF是正三角形,且其边长为8RsinA/3sin(60°-B/3)sin(60°-C/3),其中R为△ABC的外接圆半径。证明:需引入下列两个三角恒等式: (1)sinθ =4sinθ/3sin(60°-θ/3)sin(60°+θ/3). (2)sin~2α+sin~2β十2sinαsinβcos(α+β) =sin~2(α+β). 在△BCD中,由正弦定理得  相似文献   

11.
一、应用正弦定理判定【例1】已知在△ABC中,sin2A+sin2B=sin2C,求证△ABC是直角三角形.证明:由正弦定理sinA=2aR,sinB=2bR,sinC=2cR,代入sin2A+sin2B=sin2C中,得4aR22+4bR22=4cR22,∴a2+b2=c2,故△ABC是直角三角形.二、应用余弦定理判定【例2】在△ABC中,A、B、C所对的边分别为a、b、c,a≠b,且a·cosA=b·cosB.判定△ABC的形状.解:α·cosA=b·cosB,由余弦定理得α·b2+2cb2c-a2=b·a2+2ca2c-b2,化简整理得(a2-b2)(c2-a2-b2)=0,∵a≠b,∴a2+b2=c2,故△ABC是直角三角形.三、应用根的判别式判定【例3】若a、b、c为△ABC的…  相似文献   

12.
<正>既然数学题是做不完的,我们就要利用有限的"好题"来提高学生的学习兴趣和思维能力.江苏教育出版社《高中数学必修5》第24页第6题~[1]就是一道"一题多变"的"好题".1 题目呈现在△ABC中,已知2a=b+c,sin~2A=sinBsinC,试判断△ABC的形状.解析根据正弦定理和已知条件sin~2A=sinBsinC,知a~2=bc.再由2a=b+c,得到4a~2=(b+c)~2=b~2+c~2+2bc=4bc,即(b-c)~2=0,故  相似文献   

13.
文[1]给出了如下不等式:在△ABC中,有cosA.cos~2B/2cos~3C/3≤27/64①.经类比探究,笔者得到了一个上述不等式的"姊妹不等式":在△ABC中,有sinAsin~2B/2sin~3C/3≤1/64②,当A=B/2=C/3时等号成立.证明∵sinAsinB/2=-1/2[cos(A+b/2)-cos(A-B/2]  相似文献   

14.
绝妙解法     
题目求 sin~210°+cos~240°+sin10°cos40°的值.解△ABC 中,由余弦定理和正弦定理,有a~2=b~2+c~2-2bccosA, (1)(a/(sina))=(b/(sinB))=(c/(sinC))=k (2)由 a=ksinA,b=ksinB,c=ksinC 代入(1)得sin~2A=sin~2B+sin~2C-2sinBsinC·cosA. (3)  相似文献   

15.
一、求值例1 在△ABC中,已知tanA,tanB是方程3x2+8x- 1=0的两根,求tanC的值. 解由韦达定理得∵A+B+C=180°∴C=180°-(A+B). ∴tanC=tan[180°-(A+B)]=-tan(A+B)=-(-2)=2. 例2 已知△ABC的三个内角满足:2B=A+C,  相似文献   

16.
我们知道,在△ABC中,已有下列不等式: sinAsinBsinc≤(3/8)3(1/2)=sin~3(π/3) ① Sin(A/2)sin(B/2)sin(C/2)≤1/8=sin~3(π/6) ② 这类不等式可以推广为: 命题 在△ABC中, Sin(A/k)sin(B/k)sin(C/k)≤sin~3(π/3k)(k∈N) ③  相似文献   

17.
命题 在任意△ABC中,∠A、∠B、∠C表示其三内角.则 sin~3A sin~3B sin~3C≤(9/8)3~(1/2),等号当且仅当△ABC为正三角形时成立. 证明 由三角形恒等式  相似文献   

18.
定理:在△ABC和△A‘B’C‘中,如果乙A=艺A尹,乙B+匕B产=180。。则AC:BC二A声C产:B,C产。 证明:根据正弦定理,对△ABC和△A‘B了C‘都有:_5 1 OB 5 inA_5 inB, 5 inA夕。 AC:BC==A,C一,:B尹C,。 本定理有着广泛的应用。利用它来证明某些几何命题,往往比常规证法明快得多。下面举例说明。 例1已知E、F是四边形ABCD一组时边的中点,EF的延长线交另一组对边的延长线于p、口。若艺BpE=艺万()C,本证A刀=CD:C一CA一B再由题设条件易得证明:在△P刀B和△QEC中,有艺1=艺2,匕3+艺4二180。。由定理得PB:EB二QC:EC但已知EB二…  相似文献   

19.
关于垂足三角形外接圆半径之间有下面一个恒等式:定理设△DEF是锐角△ABC的垂足三角形,且BC=a,CA=b,AB=c,△ABC的面积,外接圆半径,内切圆半径分别为?,R,r,若△AEF,△BDF,△CDE的外接圆半径依次为R A,BR,RC,则cot cot cotA2B2C2R A+R B+RC2(R r)r=??.(1)证明如图,由文[1]知EF=a cos A,FD=b cos B,DE=c cos C,∵A2sinREF=A cos2sina A=A2sin cos,R A A=A H D AE BFC∴R A=R cos A.同理RB=R cos B,RC=R cos C.令cot cot cot,A2B2C2K=R A+R B+RC在△ABC中应用常见恒等式:?=rs,cot2422∑A=s?R?r?r,csc2422…  相似文献   

20.
赵绪昌老师,在文中,应用一个定理简结地解答了三道竞赛题。这定理如下: 定理 设A'、B'、C'分别在△ABC的三边BC、CA、AB上,若AC':C'B=p,BA':A'C=q,CB':B'A=r,△ABC与△A'B'C'的面积为S_(△ABC)与S_(△A'B'C')。则  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号