首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 166 毫秒
1.
下面是 2 0 0 2年的一道高考题 :设A、B是双曲线x2 -y22 =1上的两点 ,点N( 1 ,2 )是线段AB的中点 .( 1 )求直线AB的方程 ;( 2 )如果线段AB的垂直平分线与双曲线交于C、D两点 ,那么A、B、C、D 4点是否共圆 ?第 ( 1 )小题 .应用作差法和中点坐标公式易求得直线AB的斜率k=1 ,方程为x -y+1 =0 .第 ( 2 )小题 ,解法很多 ,为简化解题过程 ,可绕过求交点 ,直接建立圆的方程 ,证明 4点在这个圆上 .∵CD ⊥AB ,且过点N( 1 ,2 ) ,∴CD的方程为x +y-3 =0把直线AB、CD看成二次曲线 (x-y+1 ) (x +y-3 ) =0 ,这样…  相似文献   

2.
“设而不求”是解析几何中一种常用的重要方法和技巧 ,它能使问题简化 .但如何使用这种方法 ,在使用过程中应注意哪些问题 ,却经常困扰着同学们 .在此 ,笔者愿跟大家谈谈对上述问题的看法与认识 .一、哪些问题适合“设而不求”一般说来 ,解题中涉及到但又不需具体求出的中间量 (称为相关量 )可采取“设而不求” .1 巧设相关点例 1 过圆x2 +y2 =r2 外一点P(x0 ,y0 )作圆的两切线PA、PB ,A、B为切点 ,求连结A、B两切点的直线方程 .解 设A(x1 ,y1 ) ,B(x2 ,y2 ) ,则切线PA的方程为   x1 x + y1 y=r2 ,切线P…  相似文献   

3.
中点问题是解析几何中的重点、热点问题 .本文给出它的一种处理方法 :若M是线段AB的中点 ,且M点的坐标为 (x0 ,y0 ) ,则可设A(x0 +m ,y0 +n) ,B(x0 -m ,y0 -n)  (m ,n∈R) ,再结合题目中的其它条件进行解题 ,是一种行之有效的方法 ,以下分别举例加以说明 .1 判断直线 (或曲线 )的存在性例 1 已知双曲线 x24 - y22 =1,问是否存在直线l,使N(1,12 )为直线l被双曲线所截弦AB的中点 .若存在 ,求出直径l的方程 ;若不存在请说明理由 .解 由题意得N(1,12 )为弦AB的中点 ,可设A(1+m ,12 +n) ,B(1-m ,12 -n) …  相似文献   

4.
在圆锥曲线中 ,求弦长为定值的动弦中点的轨迹方程是解析几何中比较棘手的问题 ,解题的方法较多 ,但运算过程繁琐复杂 ,学生往往难以入手 .本文归纳一种解题方法———角参变量法 ,可以大大地减少计算量 ,简缩推理过程 .下面简述其解题的基本思想及解题规律 .设圆锥曲线C :F(x ,y) =0的弦P1P2 的长为l ,则可设P1(x l2 cosα ,y l2 sinα) ,P2 (x - l2 cosα ,y - l2 sinα) ,其中α是直线P1P2 的倾斜角 ( 0≤α <π) .由点P1,P2 在圆锥曲线上 ,则F(x l2 cosα ,y l2 sinα) =0 ,F(x - l…  相似文献   

5.
如何求曲线关于直线对称的方程呢 ?我们认为从曲线关于直线对称的本质出发 ,巧用平移从一个全新的角度来求曲线关于直线对称的方程 ,是解决该类问题的一种有效的方法 .下面举例说明 .一、巧设平移变换求曲线关于直线对称的方程 .例 1 求曲线C :3x2 y2 =4关于直线L :y=x 2对称的方程 .解 :设要求的曲线上任意一点M (x ,y) ,它关于L对称点为M′ ,令变换 :x′=x 2y′=y 则在该变换下 :M的坐标变成M(x′-2 ,y′) ,L的方程变成 :y′ =x′点 ,(a ,b)关于直线y =x对称的点为 (b ,a) ,∴M′的坐标为 (y′ -2 ,x…  相似文献   

6.
在新编高中数学教材中增加了向量一章后 ,向量的坐标可用其起点、终点的坐标来表示 ,使向量与平面解析几何有了必然的联系 ,特别是两向量垂直与平行的充要条件 ,给求曲线的轨迹方程带来了极大的方便 ,使解题过程由复杂而变为简单 ,下面举几例来说明向量在求曲线方程时的简单应用 :例 1 过定点M ( 2 ,1)引动直线l,l与x轴、y轴分别交于A、B两点 ,求线段AB中点P的轨迹方程 .分析 以往解析几何中 ,设过点 ( 2 ,1)的直线的斜率为k ,由点斜式得直线l的方程为 :y- 1=k(x - 2 ) ,然后分别令x=0 ,y=0 ,求出A、B两点的坐标 ,再设…  相似文献   

7.
例 1 已知x ,y ,z>0 ,证明 :z2 -x2x + y + x2 -y2y +z + y2 -z2z +x ≥ 0 .证明 设x+ y =a ,y +z=b ,z +x=c ,则z-x =b-a ,x -y =c-b ,y-z=a -c,a ,b ,c>0 .于是原式等价于bca + cab + abc ≥a +b+c .由bca + cab ≥ 2c等得证 .例 2 在 ABC中 ,a +b +c=2s ,a ,b,c为三边 ,则abc≥ 8(s-a) (s -b) (s-c) .证明 设s -a =α ,s-b =β ,s-c =γ ,则α ,β ,γ >0 ,α+ β =c,β +γ=a ,α +γ=b.于是原式等价于(α + β) (β+γ) (γ +α)≥ 8αβ…  相似文献   

8.
我们知道 ,asinα+bcosα =a2 +b2 sin(α +φ) ,其中 φ角所在象限由a、b的符号确定 ,φ角的值由tanφ =ba 确定 ,这个公式称为辅助角公式 .该公式在解题中有广泛的应用 .一、求最值例 1 求函数 y =3sin(x +2 0°) +5sin(x +80°)的最大、最小值 .解 :令θ =x +2 0°,则y =3sinθ +5sin(θ +6 0°) =3sinθ+512 sinθ+32 cosθ =112 sinθ +52 3cosθ=7sin(θ +φ) .∴ y的最大、最小值分别为 7、- 7.二、求值例 2 若函数f(x) =sin2x +acos2x的图象关于直线x =- …  相似文献   

9.
在平面解析几何中 ,关于平行直线有如下结论 :设有两条平行直线l1:Ax By C1=0和l2 :Ax By C2 =0 ,则到这两条直线距离相等的直线方程为Ax By C1 C22 =0 .证明 设P(x ,y)是所求直线上任一点 ,由题设以及点到直线的距离公式 ,有|Ax By C1|A2 B2 =|Ax By C2 |A2 B2 .  因为l1与l2 在点P的两侧 ,所以有Ax By C1=- (Ax By C2 ) ,即 Ax By C1 C22 =0为所求的直线方程 .运用该结论可以得到一种求直线对称点的新方法 .例 已知A(- 2 ,4 ) ,求它关于直线l:2x- y -1=0的对…  相似文献   

10.
我们知道 ,圆与椭圆的参数方程与三角函数有密切的联系 .对一些具有平方和形式的问题 ,利用圆与椭圆的参数方程 ,能使问题的解决简便快捷 .一、求轨迹问题例 1 已知点P是圆x2 + y2 =16上的一个动点 ,点A是x轴上的定点 ,坐标为 (12 ,0 ) ,当点P在圆上运动时 ,线段PA的中点M的轨迹是什么 ?解 圆x2 +y2 =16的参数方程为x =4cosθ ,y=4sinθ (θ为参数 ) .设动点P的坐标为 (4cosθ ,4sinθ) .由中点坐标公式 ,得点M的轨迹的参数方程为x =6+ 2cosθ ,y=2sinθ (θ为参数 ) .因此线段PA的中点M的轨迹是以…  相似文献   

11.
应用 1:利用导数的几何意义解题函数 y =f(x)在x0 处的导数的几何意义 ,就是曲线 y =f(x)在点P(x0 ,f(x0 ) )处的切线的斜率 .例 1 若抛物线y =4x2 上的点P到直线y =4x - 5的距离最短 ,则点P的坐标为 .  解 :在抛物线 y =4x2 上求一点P到直线y =4x - 5的距离为最短 ,即找一点P使过该点的切线与直线 y =4x - 5平行 .对函数y =4x2 求导 ,得 y′ =8x ,所以曲线上任一点的切线斜率k =8x .令 8x =4 ,求出x=12 ,代入抛物线方程得y=1.故P 12 ,1.应用 2 :利用导数求函数的单调区间一般地 ,设函数y =f(x)在…  相似文献   

12.
解析几何中的圆锥曲线是高考的重点、难点和热点 ,而其中的计算是困难的 .如何避免求交点 ,从而简化计算 ,也就成了处理这类问题的难点与关键 .下面介绍一种策略———设而不求 ,这实质是整体结构意义上的变式和整体思想的应用 .一、与中点弦及弦的中点有关的问题例 1 过点A(2 ,1 )的直线与双曲线x2 -y22 =1交于M、N两点 ,求弦MN的中点P的轨迹方程 .解 :设M(x1 ,y1 ) ,N(x2 ,y2 ) ,则x21 -y21 2 =1 ,x22 -y222 =1 ,两式作差并整理 ,得y1 -y2x1 -x2 =2 x1 x2y1 y2 .设弦MN的中点P(x0 ,y0 ) ,又kMN =k…  相似文献   

13.
一、直接由题设得不等关系 ,求得结果若问题中给出了某相关参数的取值范围 ,而所求参数依赖于已知参数 ,则可先建立起它们之间的关系 ,再利用已知参数的范围求得未知参数的范围 ,从而达到解决问题的目的 .例 1 已知双曲线C :x2 + 1-t2t2 y2 =1(t>1)的右支分别与x轴及直线x + y =0相交于A、B两点 .以A为焦点 ,对称轴是x轴且开口向左的抛物线经过点B ,设抛物线的顶点为M .求当双曲线的一条渐近线的斜率在 415 ,+∞ 上变化时 ,直线BM的斜率的变化范围 .解 :由y=-x ,x2 + 1-t2t2 y2 =1,得B(t,-t) .设M (m ,0 ) ,由…  相似文献   

14.
弦的中点是沟通弦端点、弦的斜率、弦长以及与弦相关的对称问题、轨迹问题的“血管”和“神经” ,灵活利用弦中点的“动”、“静”规律 ,构造动弦、定弦处理与弦有关的问题 ,奇特巧妙、简捷新颖 .本文就这类问题给以归类例析 ,供参考 .曲线 f(x ,y) =0关于点M (x0 ,y0 )对称的曲线方程是f( 2x0 -x ,2y0 -y) =0 ,两式相减得f(x ,y) -f( 2x0 -x ,2 y0 - y) =0 . ( 1)此即为以M为中点的弦所在直线方程 ,简称“中点弦方程” .以此弦作为解题模式的思想方法简称为“中点造弦法” .由 ( 1)易得几种常见曲线b2 x2 ±a2 y2 …  相似文献   

15.
大家都知道 ,过两曲线f1(x ,y) =0 ,f2 (x ,y) =0的支点的曲线系方程为f1(x ,y) λf2 (x,y) =0 (λ∈R) .利用它来处理解几中过两曲线交点的某些问题显得特别方便 ,但是运用曲线系方程时应注意以下两个问题 .1 应判定解的存在性应判定解的存在性 ,是指解题之前首先应判定曲线f1(x,y) =0与f2 (x ,y) =0是否有交点 .如果有交点 ,则可用曲线系方程解之 ;如果无交点 ,说明本题无解 ,否则就可能将无解题求出解来 .例 1 求过两圆x2 y2 - 2x - 3=0和x2 y2- 10x 2y 2 5 =0的两个交点的直线方程 .解 过两圆交点的曲…  相似文献   

16.
以圆锥曲线内一定点为中点的弦所在直线的方程简称中点弦方程.本文以较为简捷的一种方法,先建立中点弦方程,再依此方程推导一组曲线方程,供同仁参考.1求中点弦方程的一种简便方法为方便起见,设圆锥曲线的方程为Ax2+Cy2+Dx+Ey+F=0,()其中,A...  相似文献   

17.
有关圆锥曲线弦的二端点与原点连线的斜率问题 ,涉及解析几何中许多重要的知识点 ,在各种考试的试题中经常出现 .若用常规方法解决 ,运算量大、过程冗繁 .本文通过实例介绍这类问题的一种简捷解法 .例 1  (1993年上海市高考试题 )抛物线 y=- 12 x2 与过点M(0 ,- 1)的直线l相交于A、B两点 ,O为坐标原点 .若直线OA与OB的斜率之和为1,求直线l的方程 .解 设直线l的方程为 y =kx- 1,即 1=kx-y .代入抛物线方程 2 y· 1+x2 =0得    2y(kx- y) +x2 =0 .整理后两边同时除以x2 ,有   2 (yx) 2 - 2k· (yx) - …  相似文献   

18.
解析几何是用代数方法研究几何问题的数学分支,题目可能涉及到代数、几何、三角等各种数学知识,这就决定了一个解析几何问题可能有不同的解法.解析几何题的一题多解会有利于提高思维的灵活性,进而有利于提高解决数学综合问题的能力.例 如图,抛物线x2=4y,过定点P(0,2)作一条直线交抛物线于M、N两点.求弦MN的中点的轨迹方程.解法1:设过P点的任意一条弦MN的中点为Q(x,y),且M(x1,y1),N(x2,y2),则弦MN的斜率必然存在∴ x21=4y1,x22=4y2,x1+x2=2x,y1+y2=2y.①②③④①-②,得(x1+x2)(x1-x2)=4(y1-y2),y1-…  相似文献   

19.
构造二次函数解答三角方程或三角不等式中求所含参数取值问题 ,是一种有效的方法 .举例说明如下 :例 1  (2 0 0 1年北京市中学生数学竞赛题 )若关于x的方程sin2 x+sinx +a=0有实数解 ,求实数a的最大值与最小值的和 .分析 如果把sin2 x+sinx +a=0单纯看作一个关于sinx的方程 ,用判别式和求根公式来求解 ,则十分冗繁 .视a为关于sinx的二次函数 ,则易于求解 .令t=sinx ,则 -1 ≤t≤ 1 .a=-t2 -t=-t+ 122 + 14 .当t=-12 时 ,amax =14 .当t=1时 ,amin =-2 .∴amax +amin =-74.例 2 …  相似文献   

20.
直线方程x0x/a^2+y0y/b^2=1的几何意义   总被引:6,自引:0,他引:6  
文 [1]给出了直线方程x0 x y0 y =r2 的三种几何意义 .笔者认为直线方程 x0 xa2 y0 yb2 =1也有类似的几何意义 .先求经过椭圆 x2a2 y2b2 =1(a >0 ,b >0 )上一点P(x0 ,y0 )的切线方程 .设切线的斜率为k ,则其方程为y - y0 =k(x -x0 )或y=k(x -x0 ) y0 .将y的表达式代入椭圆方程 ,得x2a2 [k(x -x0 ) y0 ] 2b2 =1.化简并整理为x的二次方程就是(b2 a2 k2 )x2 - 2a2 k(kx0 - y0 )x a2 (kx0 -y0 ) 2 -a2 b2 =0 .  由于点P(x0 ,y0 )是切点 ,所以x0 是这个方程的二重实…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号