首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在解析几何中,中点弦问题是一个很常见很重要的问题.中点弦问题通常用“点差法”求解,也可以列方程组,用韦达定理求解.反过来,如果弦满足某些条件(斜率是定值、经过定点或弦长为定值等),与两条相交直线都相交的弦的中点的轨迹方程是什么?轨迹是什么?这是一个值得探究的问题.  相似文献   

2.
弦论等"超验"理论中的非经验评判是否合理以及是否意味着当代物理学中的新研究范式,是当前科学哲学的研究热点.相关非经验评判争论常常聚焦于对作为一个理论的弦论的评判.然而,把弦论视为一个理论面临一定问题,相关非经验评判争论中的弦论更接近研究方法或进路而非一个特定的单一的理论,而且人们对于弦论的信心在特征上也与对于研究方法或进路的信心相似.将弦论等"超验"理论的非经验评判视为理论证实问题是一种误区,应当将弦论等"超验"理论视为研究方法或进路来展开争论.  相似文献   

3.
中点弦问题是直线与圆锥曲线相交的典型题型,可通过一元二次方程的根与系数的关系或用点差法求解.若在客观题中解决圆锥曲线的中点弦问题用这两种方法未免耗时太多.应用圆锥曲线的中点弦公式,能快速解决这类圆锥曲线中点弦的客观题.  相似文献   

4.
关于直线和圆锥曲线相交所得弦的中点的有关问题 ,在高考试题中频繁出现 ,诸如平行弦的中点问题 ,过定点的弦的中点问题 ,弦中点的性质问题等等 .由此还可以派生出一系列相关问题 ,如轨迹、曲线方程、弦长、定点坐标、最值、取值范围等等 .关于这些问题的求解 ,题型不同 ,方法也不尽相同 .本文将探讨处理圆锥曲线弦的中点问题的三种行之有效的方法 ,并分类解析这些方法在各类问题中的应用 .一、韦达定理法设直线 l与某圆锥曲线 C相交所得之弦为 P1P2 ,联立直线 l的方程与圆锥曲线 C的方程 ,消去 x(或 y) ,则得到一个一元二次方程 ,根据韦…  相似文献   

5.
圆的证明问题是初中平面几何中的难点之一,解决圆的问题关键在于正确地作出有关的辅助线,那么应如何作圆的辅助线呢?本文就圆中常见的辅助线及其作用作些归纳,供同学们参考. 1 已知弦,常引的辅助线是:垂直于弦的直径(或弦心距);过弦端点的半径.如图,其作用是:①应用垂径定理;②利用半弦长、弦心距和半径组成直角三角形. 2 已知直径,常引的辅助线是:作直径所对的圆周角.如图,其作用是得到直角∠ACB.  相似文献   

6.
一、作弦心距 在圆中,当解决与弦有关的问题时,常作弦心距这条辅助线,构造直角三角形进行计算,或利用垂径定理进行证明(线段相等或弧相等). 例l 如图l所示,⊙O的半径弦点为弦上一动点,则点到圆心的最短距离是 ______cm. 分析:点P在弦AB上运动,圆心在弦AB所在直线外,根据"直线外一点到直线上所有连线中,垂线段最短",结合勾股定理即可解决.  相似文献   

7.
正已知直线被圆锥曲线所截得的弦的中点坐标,求直线的方程或圆锥曲线的方程是一种重要题型,俗称"中点弦问题",其中渗透了处理圆锥曲线问题中的典型思维方法.而对其解题结果的合理取舍,则是我们在解题过程中极易忽视或出错的地方.现举例说明.  相似文献   

8.
和三角形、四边形相比,圆这部分知识显得综合性比较强,与所学知识联系较大,所以,学生往往不会作辅助线或找不出最佳的证明方法.经过多年的教学实践,笔者总结出在解决圆的有关问题时常用到如下几种作辅助线的方法:1.有弦,可作弦心距.2.有切线,可连过切点的半径.3.有直径,可作直径上的圆周角或作同弧或等弧所对的圆周角.4.两圆相交时可连结公共弦.  相似文献   

9.
"追及问题"是对研究单个物体(或质点)运动的延续和拓展,这类问题常涉及的是两个或两个以上物体(或质点)在某段时间内发生的相关运动.两物体在同一直线上运动所涉及的追及、相遇、相撞的问题,通常归为追及问题.追及问题主要研究同向追及问题,同向追及问题的特征是两个运动物体同时不同地(或同地不同时)出发作同向运动,在一定时间之内,后面的追上前面的物体.追及问题中的相撞问题是运动学中的一个难点问题,该类问题与生活实际联系密切,是能力考查不可或缺的命题素材,应引起足够的关注.分析该类问题需要学生有正确的时间和空间观念(物体的运动过程总与时间的延续和空间位置的变化相对应),要求我们必须理解掌握物体的运动性质及规律,具有较强的综合素质和能力.这类问题的求解方法多种多样,讨论这类问题不仅可以帮助学生进一步熟悉、掌握运动学中的规律和公式,而且对于培养学生的物理思维能力很有好处.  相似文献   

10.
“追及问题”是对研究单个物体(或质点)运动的延续和拓展;这类问题常涉及的是两个或两个以上物体(或质点)在某段时间内发生的相关运动。两物体在同一直线上运动所涉及的追及、相遇、相撞的问题,通常归为追及问题。追及问题主要研究同向追及问题,同向追及问题的特征是两个运动物体同时不同地(或同地不同时)出发作同向运动,在一定时间之内,后面的追上前面的物体。追股问题中的相撞问题是运动学中的一个难点问题,该类问题与生活实际联系密切,  相似文献   

11.
几何证明一般都离不开作辅助线 ,能否迅速、准确地作出所需的辅助线 ,往往成为证题成败的关键 .本文就圆中常见辅助线的作法归纳如下 ,供参考 .1 作弦心距证明圆中与弦有关的问题 ,常需作弦心距 (即垂直于弦的直径或半径 ) ,其目的在于利用垂径定理来沟通弧、弦、弦心距之间的关系 ,或构造以半径、弦心距、弦为边的直角三角形 .例 1 求证 :经过相交两圆的一个交点的那些直线 ,被两圆所截得的线段中 ,平行于连心线的那一     图 1条线段最长 .分析 如图 1,PQ∥OO′ ,要证PQ最长 ,只须证明PQ大于过A点的任意一条不平行于OO…  相似文献   

12.
有关圆锥曲线弦的问题,通常的解法是应用直线的参数方程或待定系数法.这种解法冗繁,且极易出错,若采用坐标转移,将弦的中点坐标转移到已知圆锥曲线上来考虑,则解法简捷,直观.  相似文献   

13.
同心圆问题在近几年的中考试题中屡见不鲜 .这类问题的基本类型有两种 :一是大圆的弦与小圆相交或从大圆上一点引小圆的割线 ,即涉及小圆的割线问题 ;二是大圆的弦与小圆相切 ,即涉及小圆的切线问题 .解答前一类型的问题 ,常作的辅助线是作弦心距或小圆的切线 ;解答后一类型的问题常作的辅助线是作经过切点的半径 .例 1 如图 1 ,在以O为圆心的两个同心圆中 ,大圆的弦AB交小圆于C、D两点 .求证 :AC =BD .( 1 998年内蒙古自治区呼和浩特市中考题 )证明 过O作OE⊥CD于E ,则CE =DE .∵ OE⊥AB于E ,∴ AE =BE .…  相似文献   

14.
在解决初中数学与圆相关的问题中,垂径定理是最基础也是最常用的定理之一.因为垂径定理涉及半径与弦的垂直关系,所以当出现与半径相关的三角形,要求其弦长、弦心距、线段长度,以及线段(或弦)与线段(或弦)之间的数量关系时,通常都会先利用垂径定理构造出直角三角形,再根据勾股定理求得所涉及线段的长度,考查学生的抽象思维和数形结合的能力.本文选取一道典型的例题,运用垂径定理设计出四种解题方法,给出详细的思考过程和解题步骤,帮助学生在运用垂径定理求解与圆相关的几何问题时,可以发散思维,活学活用.  相似文献   

15.
<正>解析几何是高考数学的重要考查内容,常作为高分选拔的试题知识点.而直线与圆锥曲线位置关系问题又是解析几何中常见的类型.纵观近年来的高考题,有几类常见问题应引起我们关注,本文举例说明这几类问题并探究其求解策略.一、圆锥曲线的"三类弦"问题在解决直线与圆锥曲线的弦长问题时,通常应用韦达定理与弦长公式.若涉及到"三类弦"(焦点弦、中点弦、原点弦)问题,则可根据各自的几何特征,简化运算,巧妙求解.1.焦点弦例1 (2018年全国高  相似文献   

16.
文[1]就2004年福建省高考理工类22题、文史类21题给出了受限动弦中点轨迹方程的一般形式,本文就此涉及的问题给出中心(或顶点)在动弦上射影的轨迹方程.并予以推广.定理1椭圆22xa2 by2=1的弦PQ垂直于过P的切线.则中心O在弦PQ上的射影D的轨迹方程为:22222222(x y)(xa2 by2)=(a?b)  相似文献   

17.
我们把垂直于二次曲线对称轴的弦称为它的垂轴弦.二次曲线的垂轴弦有许多性质,以下分椭圆或双曲线、圆、抛物线几种情形给出它们的垂轴弦的一个性质.  相似文献   

18.
用“代点法”解直线与曲线的相交弦问题西安冶金机械厂中学王玉杰解析几何中.曲线的方程和方程的曲线的定义,为设点、代点提供厂理论依据.当直线与曲线的相交弦的小点恰为坐标原点.或中点弦的斜率已知(或可用有关参数表示).或相交弦经过定点时,则该相交弦的端点的...  相似文献   

19.
直线与圆锥曲线的交点个数、相交弦及其综合运用等问题可转化为它们对应的方程所构成的方程组是否有解或解的个数问题对于相交弦长及弦的中点问题要学会“设两不求”:对于焦点弦的问题要会利用圆锥曲线的焦半径公式进行求解.  相似文献   

20.
中点弦问题就是当直线与圆锥曲线相交时,得到一条弦,进一步研究弦的中点的问题.中点弦问题是解析几何中的重点和热点问题,在高考试题中常常出现.解决圆锥曲线的中点弦问题,点差法是一个行之有效的方法,点差法顾名思义是代点作差的办法.其步骤可简要地叙述为:①设出弦的两个端点的坐标;②将端点的坐标代入圆锥曲线方程相减;③得到弦的中点坐标  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号