首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
在教学中,我们常遇到部分同学提出的新的带普遍性的问题;既然F—H…F氢键比O—H…O氢键强,却为何HF反而比H_2O的熔沸点低?本文拟这个问题进行讨论。  相似文献   

2.
HO2的熔沸点比HF高的主要原因有:一是两者形成的氢键数目不同,每摩尔H2O形成氢键的总数比每摩尔液态HF多;二是熔化或沸腾时两者破坏氢键的程度不同。  相似文献   

3.
由上表可见,卤化氢中沸点最低的是HCl,沸点最高的是HF;熔点最低的是HCl,熔点最高的是HI。沸点以HCl-HBr-HI-HF的次序升高,熔点以HCl-HBr-HF-HI的次序升高。下面,就以上数据,讨论两个问题:一、卤化氢的熔点和沸点变化的理论解释。影响卤化氢熔、沸点变化有两个因素是最主要的:一是分子间作用力(范德华引力),二是氢键。在卤化氢熔、沸点表中可以看出:除HF以外,其他卤化氢熔、沸点都依HCl-HBr-HI的顺序升高,这是由于Cl、Br I的原子体积比F原子大,电负性比F小,它们的氢化物HCl、HBr、HI分子间都不能形成氢键,仅考虑分子间作用力(包括取向力、诱导力、色散力)对熔  相似文献   

4.
物质沸点高低是由构成物质质点间作用力大小决定的。物质质点间作用力包括分子之间的作用力和各种化学键。以下拟从这两方面谈几点比较物质沸点高低的方法。 一、从分子之间作用力大小比较物质沸点高低 1.氢键法。因为氢键作用力>范德华力,所以由氢键构成的物质沸点高于由范德华力构成的物质。如:乙醇>氯乙烷。 HF>HI>HBr>HCl。  相似文献   

5.
氢卤酸有许多共性,但其中的氢氟酸却有许多与众不同的性质,现将其有关的特性列举如下:一.HF的熔、沸点比HCl的高同主族元素气态氢化物的熔、沸点一般随着相对分子质量的增大而升高.但是,HF的熔点(-83.4℃)、沸点(19.5℃)比HCl的熔点(-114.7℃)、沸点(-84.2℃)反而要高.这是由于HF分子间形成氢键,使得分子间发生  相似文献   

6.
江锡钧 《新高考》2007,(12):29-30
物质熔、沸点高低是由构成物质质点间作用力的大小决定的。物质质点间作用力包括分子间作用力(范德华力)、氢键和化学键。化学键又包括离子键、共价键和金属键。因此,判断物质熔、沸点高低主要依靠比较质点间作用力的大小。一、物质熔、沸点高低判断的一般规律1.状态法判断物质熔、沸点高低,在相同的条件下,可以比较它们的状态,即固体>液体>气体。如:碘(固体)>液溴(液体)>氯气(气体)。2.晶体类型法不同类型晶体质点间作用力各不相同。分子晶体质点间作用主要是分子间作用力,分子间作用力比化学键弱得多,所以一般情况下熔、沸点都比较低。离…  相似文献   

7.
氨气极易溶解于水。0℃时1体积水可溶解1176体积氨气。氨气为什么极易溶解于水呢?除了NH_3和H_2O这两种极性物质相似相溶外,更主要的是由于氢键的作用。在低温时,NH_3和H_2O形成两种稳定的晶体水合物:NH_3·H_2O(熔点194.15K)和2NH_3·H_2O(熔点194.32K)。在这两种晶体水合物中,NH_3分子和H_2O分子由氢键来连结,NH_3和H_2O通过O-H…N键(键长2.78A)及O…H-N键(键长3.21A~3.29A)构成立体晶格。因此,在氨的水溶液中,大部分的氨是以水合氨分子(通常以NH_3·H_2O表示)  相似文献   

8.
一、引言 沸点与结构有关,有机化合物沸点决定于分子间引力(即范德华引力)的大小。这一认识早为人们所熟知。通常人们总是通过范氏引力中的定向力、诱导力、色散力等项以及形成氢键的强弱来解释或定性预测各种有机化合物的沸点变化情况。但事实上,这种认识是十分粗糙的,除一些简单有机化合物及其同系物的沸点问题能得到较满  相似文献   

9.
为了帮助同学们进行全面复习,现将本学期的内容要点、基本要求概括一下,供大家参考。一、化合物结构与性质的关系结构理论是有机化学的基础,弄清结构与性质的关系可以帮助我们理解、分析和记忆各类不同结构的化合物的不同性质。举下面几个方面的例子。1.键的极性和氢键对沸点的影响键的极性及分子间氢键的形成都能使分子之间的作用力增大,因而使化合物的沸点增高。例如,醇、酚、羧酸的分子间由于有氢键,故沸点较高。醇的沸点比分子量相近的烷烃、醚要高得多。羧酸的沸点比分子量相近的醇还要高。醛和酮本身不能形成氢键,因而沸点比分子量  相似文献   

10.
在一些资料中,常看到这样一道试题:“在HF、HCl、HBr、HI中,熔沸点最高的是____。”给出的答案多为HF(或HI)。本人认为,除了命题的毛病外,其答案也是不正确的。因为在这四种卤化氢所形成的晶体中,熔点最高的并不是HF(熔点190.0K)而是HI(熔点222.2K)。HF虽因分子间氢键的存在,熔点比HCl  相似文献   

11.
过氧化氢H2O2能以任意比与水混合,其分子间因具有较强氢键,故在液态、固态中存在缔合分子而使之具有较高的熔点(272K)和沸点(423K),其化学性质可归纳为:氧化性、还原性、弱酸性和不稳定性。  相似文献   

12.
本文研究了支链烷烃的分子拓扑结构,由结构图计算了分子的一阶连通性指数,将其沸点与拓扑指数相关联,得到计算支链烷经沸点的公式:Tb(℃)=aX^1/2 bN^1/4 c,式中X,N分别是分子的一阶连通性指数和碳原子数,a,b,c为常数,经计算机回归处理得到各常数值,相关系数0.9985,对85个分子的沸点重新计算,平均误差3.0(℃)。  相似文献   

13.
王春凤 《当代电大》2001,(11):76-78
1 问答题 1)比较MgO和SrO的硬度的大小,并说明理由。 答 硬度:MgO>SrO MgO和SrO均属离子晶体,在两晶体中,正负离子的电荷相同,但Sr2+的离子半径比Mg2+的离子半径大,故Mo2+对O2-的作用力大,MgO的晶格更牢固,所以MgO的硬度比SrO大。 2)比较H2O和H2S沸点的高低,并说明理由。 答 沸点:H2O>H2S H2O和H2S均为分子晶体,分子晶体中晶格结点上的作用力是分子间力,且主要是色散力,并随分子量的增大而增大,但在H2O分子晶体中还存在着氢键,其作用力比分子间力要大得多。故沸点:H2O>H2S。  相似文献   

14.
本文主要阐述了烯烃的沸点高低与其分子的极性大小反常的现象。并从物质沸点高低与分子间作用力(即范德华引力)的关系,分子结构、分子间中心距离大小等方面分析了产生这一现象的原因。  相似文献   

15.
一、分子晶体熔、沸点的变化规律分子晶体是依靠分子间作用力即范德华力维系的,分子间作用力与化学键相比弱得多,使得分子容易克服这种力的约束,因此,分子晶体的熔、沸点较低。  相似文献   

16.
运用MP2方法对N-H…O=C氢键二聚体中氢键强度进行了研究,探讨了氢键受体分子中不同取代基对N-H…O=C氢键强度的影响.研究发现,可以通过改变取代基来调节二聚体中N-H…O=C氢键强度.取代基为供电子基团,氢键强度增强.取代基为吸电子基团,氢键强度减弱.自然键轨道(NBO)分析表明,N-H…O=C氢键强度越强,参与形成氢键的氢原子的电荷越正,氧原子的电荷越负,单体分子间电荷转移越多,N-H…O=C氢键中氧原子的孤对电子n(O)对N-H的反键轨道σ*(N-H)的二阶稳定化能越大.  相似文献   

17.
一、分子晶体熔、沸点的变化规律 分子晶体是依靠分子问作用力即范德华力维系的,分子间作用力与化学键相比弱得多,使得分子容易克服这种力的约束,因此,分子晶体的熔、沸点较低.  相似文献   

18.
该实验用静态法测定了n-C_4H_(10)(1)—H_2O(2)二元体系在0.4MPa(绝压)下的汽液相平衡数据,并提供了n-C_4H_(10)对H_2O的重量校正因子数据。温度、压力分别为±0.05K和±0.002MPa,汽、液相的组成分析相对误差<±1%。  相似文献   

19.
通常,物质的熔点低于沸点,而课本中乙炔的熔点却比沸点高。什么原因呢? 查物化手册55版,乙炔的熔点-80.8℃,沸点-84.0℃_(suh)~(760);在《Lange's Hand book of Chemistry》中,乙炔的熔点是-81.5℃~(891),沸点是-84.0℃~(760)。  相似文献   

20.
根据分子拓扑学原理,用色图方法对不同的原子用不同的染色因子加以区别,发展了一种结构性能关系研究的新方法。据此探讨了脂肪酯沸点与分子结构的关系,提出一个结构基础明确的定量关系式.应用这一定量关系,不仅能够合理表征脂肪酯的结构性能关系,而且能够预测脂肪酯的沸点,同时有助于揭示物质结构与性能关系之间的奥秘.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号