首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 625 毫秒
1.
鉴于目前岩石动态断裂韧度在研究方法上没有统一的标准,有必要对其进行研究。使用花岗岩制作中心裂纹圆盘试件,预制裂纹的宽度控制在1mm左右,在SHPB试验系统下进行动态冲击,得出试件两端的平均载荷带入到推广的中心裂纹圆盘试件应力强度因子计算公式算出动态断裂韧度。  相似文献   

2.
利用断裂力学方法对含有裂纹混凝土试件的断裂韧度进行了研究。通过预制不同裂纹深度的混凝土试件,采用三点弯曲试验方法对含裂纹混凝土梁的断裂韧度进行实验,同时利用ABAQUS软件,采用最大主应力牵引损伤开裂准则与线性软化损伤模型进行数值模拟。结果表明,实验结果和数值模拟比较一致,最大误差不超过15%,当初始缝纹长度为40~120 mm时,起裂断裂韧度KiniIC变化幅度较小,失稳断裂韧度KunIC有明显的减小趋势。  相似文献   

3.
将动态焦散线方法与高速摄影技术相结合,研究了低速冲击载荷作用下3种异型夹杂(方形夹杂、圆形夹杂和三角形夹杂)与基体裂纹的相互作用.通过记录不同夹杂情况下裂纹尖端自起裂到贯穿的动态焦散斑图,分析了Ⅰ型裂纹的动态应力强度因子KdΙ和裂纹扩展速率v与时间的关系.实验结果表明:不同形状的夹杂会对裂纹尖端产生不同的阻裂效果,其中方形夹杂阻裂效果最明显;裂纹尖端焦散斑的畸变程度受到试件中夹杂形状的影响,圆形和方形夹杂对裂尖焦散斑畸变影响程度较大;三角形夹杂试件在裂纹扩展过程中裂尖动态应力强度因子值普遍高于圆形与方形夹杂试件,3组试件在断裂过程中裂尖由于受到反射波的扰动,其扩展速度、特征尺寸和动态应力强度因子值均呈现一定的波动性.研究结果为含异型夹杂构件的强度设计及抗冲击性能评估提供了依据.  相似文献   

4.
采用反射式焦散线方法对水泥石中添加玻璃纤维后的强度变化问题进行了实验研究.首先,制作了不添加与添加玻璃纤维的2种水泥石试件,并采用镜面移植方法在试件的表面进行反射镜面的制作与加工.然后,采用多火花式高速摄影系统对试件在冲击断裂过程中的裂纹扩展和裂纹尖端焦散线的情景进行记录.最后,对2种试件的裂纹起裂时间、动态应力强度因子和裂纹扩展速度等参数进行计算和对比分析.分析发现,玻璃纤维提高了水泥石的断裂韧度、延迟了裂纹的起裂时间,对水泥石具有明显的强化效应.实验结果对研究水泥石的断裂力学属性特征具有一定意义.  相似文献   

5.
《莆田学院学报》2020,(2):93-98
以腹板带贯穿型裂纹的过焊孔细节为对象,研究焊接细节应力强度因子的参数敏感性。基于ANSYS建立了三维断裂力学有限元模型,采用四分之一节点位移法分析了裂纹前缘各点的应力强度因子,探究了几何参数和裂纹长度对其影响规律。研究结果表明:1)裂纹前缘各点的应力强度因子受焊脚尺寸的影响较小; 2)裂纹前缘各点的应力强度因子随腹板板厚的增加而逐渐减小,且影响显著; 3)裂纹前缘各点的应力强度因子随翼缘板板厚、过焊孔半径和裂纹长度的增加而逐渐增大,且影响显著。  相似文献   

6.
研究弹性材料夹杂含裂纹功能梯度材料的接触问题.利用Fourier积分变换,将问题转化为关于未知位错密度函数的奇异积分方程,再用配点法对奇异积分方程进行数值求解.获得了裂纹尖端标准应力强度因子.数值结果显示了标准应力强度因子与梯度材料非均匀参数、摩擦系数、裂纹长度以及裂纹距刚性压头中心水平距离的关系.  相似文献   

7.
功能梯度材料是一种新型的非均匀材料,因为其材料常数是连续变化的,其力学基本方程和一般的弹性材料不同,断裂问题的求解也比一般弹性材料要复杂的多。结合弹性材料Ⅰ型裂纹问题的求解,采用指数模型,研究了功能梯度材料平面Ⅰ型裂纹尖端应力场,首先引人应力函数,将平面Ⅰ型裂纹问题转化为四阶常系数偏微分方程,然后给出问题的精确解答,讨论了梯度系数和应力强度因子的关系。  相似文献   

8.
裂隙岩质边坡的破坏主要表现为沿主裂隙面的剪切破坏。根据断裂力学原理,推出了边坡裂隙面扩展的方向和安全系数的函数定义式。通过工程实例分析,运用Ⅰ型和Ⅱ型断裂韧度与应力强度因子的比值和边坡水平位移与竖直位移关系曲线的渐进值,利用推出的函数定义式求解出边坡的安全系数,其物理意义明确、操作方便,并通过程序计算可同时获得该岩坡的安全系数和潜在滑移面的位置两个主要方面的内容。  相似文献   

9.
比较讨论了两种求解I型裂纹的断裂因子的方法。第一种是通过在ANSYS软件建立实验模型,计算出应力强度因子;第二种是从J积分角度推导出应力强度因子公式,并使用MATLAB实现该计算,从而计算出应力强度因子。经过验证,得知有限元分析方法是可靠的。  相似文献   

10.
应用材料破坏分析软件MFPA2D(Material Failure Process Analysis),模拟了平面应力下双向应力比不断变化条件下脆性材料的不同破坏失稳过程,以玻璃为例,重点研究了玻璃在复杂应力状态下不同双向应力比对脆性材料裂纹扩展和断裂的影响.研究结果表明,裂纹失稳扩展时的应力强度因子值随着双向应力比的升高而升高.该结果证明双向应力确实对脆性材料的断裂韧性有影响.通过将理论分析得出的应变失效准则与数值模拟研究结果及试验结果的比较研究表明,应变失效准则作为脆性材料在双向应力下的断裂准则是可行的.  相似文献   

11.
A problem for a central crack in a plate subjected to plane strain conditions is investigated.Mode Ⅰ crack loading is created by a dynamic pressure pulse applied at a large distance from the crack.It was found that for a certain combination of amplitude and duration of the pulse applied,the energy transmitted to the sample has a strongly marked minimum,meaning that with the pulse amplitude or duration moving away from the optimal values,minimum energy required for initiation of crack growth increases rapidly.The results obtained indicate a possibility to optimise energy consumption of different industrial processes connected with fracture.Much could be gained in,for example,drilling or rock pounding where energy input accounts for the largest part of the process cost.Presumably further investigation of the effect observed can make it possible to predict optimal energy saving parameters,i.e.frequency and amplitude of impacts,for industrial devices,e.g.bores,grinding machines,and hence significantly reduce the process cost.The prediction can be given based on the parameters of the media fractured (material parameters,prevalent crack length and orientation,etc.).  相似文献   

12.
The mechanism and criterion of crack initiation and propagation of rocks were investigated by many researchers,And the creep behaviour of rocks was also theoretically and experimentally studied by some scientists and engineers.The characteristics of crack initation and propagation of rocks under creep condition.however,are very improtant for rock engineering and still not paid enough attention by researchers,In this paper,the criterion and mechanism of crack initiation and propagation under creep condition were investigated using specimens collected from sandstone rock formations outcropping in the Emei Mountain,the Sichuan Province of China.Cuboid specimens under three point bending were used in this investigation.All specimens were classified into four sorts and used for Mode-I fracutre of creep frcture tests.The experimental result shows that due to creep deformation.rock crack will inevitably initialt and propagate under a load of KI,which is less than fracture toughness KIC but not less than a constant(marked as KIC2),KIC2 indicates the ability of rock to resist crack initiation and propagation under creep conditions and is less than fracture tough ness KIC.defined as creep fracture toughness in this paper,KIC2 should be considered as an importnat parameter on design and computation of rock engineering.The microstructureal mechanism for crack initiation and propagation of rock materials under creep condition was introduced based on competitive model between softening effect and hardening effect,and the validity of test result was explained.The test result was also verified in rheological theory.When KI is more than KIC2 but less than KIC,rock crack will initiate and propagate after a time interval of sustained loading under creep condition.In order to find the relation between duration of sustained lading.which can lead to crack initiation and propagation,and the initial stress intensity factor KI,an unequal0interval time sequence forecasting and predicting model was introduced,and the relation was obtained for homogeneous and isotropic fine-grained red sandstone.Finally a modified fracture toughness formula was given,in which the influence of fracture process zone(FPZ) was fully considered.  相似文献   

13.
By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture theory, KIC^ini,KIC^un, as well as the critical effective crack length and the critical crack tip opening displacement, were evaluated. Based on the double-K fracture parameters above, the calculation model of equivalent strength for induced crack was established, thus the calculation method on its initiation, stable propagation and unstable fracture was ascertained. Moreover, the finite element simulation analysis of stress field in ShaPai arch dam and the on-site observational splaying points of induced crack at different altitudes validated the reliability of the model. Finally, crack inducer‘s optimal setting in RCC arch dam was studied. It improves the design level of induced crack in RCC arch dam and satisfies the necessity of engineering practice.  相似文献   

14.
The fracture processes of concrete were described by a cohesive crack model based on initial toughness criterion. The corresponding analytical method to predict the instability state was proposed. In this model, the initial toughness was adopted as the crack propagation criterion and the weight function method was used to calculate the stress intensity factor and the crack opening displacement caused by the cohesive stress. The unstable toughness can be easily obtained using the proposed method without measuring parameters at the critical state that was necessary in traditional methods. The proposed method was verified by existing experimental data of wedge splitting specimens with different grades of concrete and the sensitivity of the results on the tensile softening curve was discussed. The results demonstrate that the proposed method can well predict the peak load, the critical effective crack length, and the unstable toughness of concrete specimens. Moreover, the calculated unstable toughness is not sensitive to the tensile softening curve.  相似文献   

15.
INTRODUCTION Adhesive bonding technology has been widely applied in modern structures in industries such as automotive, aerospace and in microelectronic device. The core idea of this technology is to bond two similar or dissimilar structure members with a thin continuous interface layer which can provide far better stress transfer across the interface than those traditional point-wise joining technologies such as spot welding, riveting and bolting. Furthermore, the damage tolerance proper…  相似文献   

16.
INTRODUCTION Cracks are likely to occur on the interfaces of coated materials widely applied in engineering. It is important to detect the interface cracks by non-destructive means. Detecting the scattered waves induced by interfacial cracks by using ultrasonic technique can be considered as one of the most fea- sible methods. This paper focuses on the theoretical basis for the study of wave scattering induced by interfacial cracks. In the last two decades, there has been a large number o…  相似文献   

17.
基于Paris 公式建立TBM 刀盘的裂纹扩展模型,利用Workbench 模拟裂纹的开裂过程,计算出其循环次数与应力强度因子。 并改变双裂纹的初始长度、距离、角度,分析多部位损伤时筋板的裂纹扩展寿命。 结果表明,裂纹的初始长度越长构件越容易失效,每增加2.5 mm 寿命将减少35%,而双裂纹距离对寿命的影响较小,在10%以内。 当裂纹方向和受力方向垂直时,构件容易失效,反之则对寿命的影响越小。 该研究可为刀盘设计过程中疲劳寿命领域提供参考。  相似文献   

18.
为了分析研究焊缝、热影响区、母材的损伤容限性能差异,对TA15钨极氩弧焊焊缝、热影响区和焊接母材分别进行了断裂韧度试验和疲劳裂纹扩展速率试验,试验结果表明:焊缝、热影响区、焊接母材的断裂韧度值差别不大;三个应力比下(R=0.5,0.06,-1)氩弧焊热影响区裂纹扩展速率均较母材及焊缝的稍高,这种现象在正应力比下的低速扩展区更明显些;焊缝裂纹扩展速率一般稍低于母材。  相似文献   

19.
In this paper a critical review is presented ofthe history and current state of the art of J-integral resistance curve testing and experimental evaluation methods in conjunction with a discussion of the development of the plane strain fracture toughness test standard ASTM E 1820 developed by American Society for Testing and Materials (ASTM). Early research efforts on this topic are reviewed first, These include the J-integral concept, experimental estimates of the J-integral for stationary cracks, load line displacement (LLD) and crack mouth opening displacement (CMOD) based ηfactor equations, different formulations of J-integral incremental equations for growing cracks, crack growth corrected .JR curve determination, and experimental test methods. Recent developments in J-R curve testing and evaluation are then described, with emphasis on accurate J-integral incremental equations, a normalization method, a modified basic method, a CMOD direct method with use of incremental equations, relationships of plastic geometry factors, constraint-dependent J-R curve testing and correction approaches. An overview of the present fracture toughness test standard ASTM E1820-08a is then presented. The review shows that after more than 40 years of investigation and development, the J-integral resistance curve test methods in ASTM E1820 have become simpler, more cost-effective and more accurate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号