首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
同一直线上线段成比例的证明是证明题中较难的一类,下面举例说明这类问题的证明方法. 如图1,已知△PQR是等边三角形,∠APB=120°.求证:AQ·RB=QR~2.  相似文献   

2.
一、原题再现题目(苏科版《数学》八(下)练习)如图1,在△PAB中,点C、D在边AB上,PC=PD=CD,∠APB=120°,△APC与△PBD相似吗?为什么?略解本题由PC=PD得出∠ACP=∠PDB,利用三角形内角和定理与推论得出∠A+∠B=60°,∠A+∠APC=60°,得出∠B=∠APC,从而判定△APC∽△PBD.点评本题容易得出∠ACP=∠PDB,  相似文献   

3.
定理 设P、Q为△ABC内两点 ,则AP·AQAB·AC +BP·BQBA·BC+CP·CQCA·CB≥ 1 . ( )等式当且仅当P、Q为△ABC等角共轭点 (即∠PAB=∠QAC ,∠PBC =∠QBA ,∠PCB =∠QCA)时成立 .证明 :如图 ,顺次以BC、CA、AB为对称轴作△PBC、△PCA、△PAB的对称图形 ,分别为△A′BC ,△B′CA ,△C′AB ,连结A′Q、B′Q、C′Q ,则易知 (以S△ 表示面积 ) :S△AC′Q+S△AB′Q=12 AC′·AQsin∠C′AQ +12 AQ·AB′sin∠B′AQ =12 AP·AQ(sin∠C′AQ +sin∠B′AQ)=12 AP·AQ·2sin ∠C′AQ +∠B′AQ2 ·c…  相似文献   

4.
本文利用轴对称图形性质“每条对称轴的左右两边的图形都全同”,先解决以下问题:如图1中,OE是等边三角形OAB的对称轴,OF是等边三角形OCD的对称轴,且OA=4(cm),OC=3(cm),那么AD的图1长是5(c m).简证因OE是△OAB的对称轴,所以OE是∠AOB的角平分线,又OF是△OCD的对称轴,所以OF是∠COD的角平分线,于是∠AOC=∠COB=∠BOD=30°,由此得∠AOD=∠AOC+∠COB+∠BOD=30°+30°+30°=90°,所以△OAD是直角三角形,于是AD2=OA2+OD2=OA2+OC2=42+32=52,因此AD=5(cm).现在我们顺着这个思路再逆想如下一问题:题目如图2,∠EOF=30°…  相似文献   

5.
一、相似三角形选择法这是一种根据三角形顶点字母的构成,选择相似三角形的证题方法,这种方法有利于从复杂的图形中找出所需要的相似三角形.例1 如图1,△PQR是等边三角形,∠APB=120°.  相似文献   

6.
题1 已知:如图1,△PQR是等边三角形,∠APB=120°。求证:(1)△PAQ∽△BPR;(2)AQ·RB=QR~2。 《几何》第二册第66页和义务教材《几何》第二册第263页上都有这道题。其证明并不难,这里略去。值得指出的是,此题耐人寻味,我们可以从其证明思路中得到下述几点启示。  相似文献   

7.
《时代数学学习》2005,(12):41-41
图1如图1,连结CD,将△ACD以D为旋转中心顺时针旋转60°到△BC′D,连接CC′则∠C′DB=∠CDA,CD=C′D,BC′=AC=b,∴∠C′DC=∠BDA=60°.∴△CDC′是等边三角形,∴CC′=CD.∴在△CBC′中,CC′≤CB+C′B=a+b.∴CD≤a+b.当C′,B,C在同一条直线上时,CD取最大值a+b.这时∠DBC′+∠DBC=180°.又∠D B C′=∠D A C,∠D B A=∠DAB=60°,∠BCA+∠CBA+∠CAB=180°,∴∠DAC+∠DBC=180°,∴∠CBA+∠CAB=60°,∴∠ACB=120°.故当∠ACB为120°时,CD取最大值,最大值为a+b.问题2.10参考答案…  相似文献   

8.
二、Morley定理 △ABC的每两个内角相邻的三等分线分别相交于D、E、F,则△DEF是一个等边三角形。 证明 设∠A=3α,∠β=3β,∠C=3γ,则α+β+γ=60°。延长BF、CE,交于M,连MD。则因D是△MBC的内心,故∠EMD=∠FMD=30°+α。 下证ME=MF。  相似文献   

9.
题目如图1,四边形ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件中,不能推出△ABP与△ECP相似的是().(A)∠APB=∠EPC(B)∠APE=90°(C)P是BC边的中点(D)BP∶BC=2∶3本题答案应该是C.但许多同学是这样解的:当∠APE=90°,∠1+∠α=90°,又因为∠β+∠1=90°,所以∠α=∠β,又因为∠B=∠C,所以△ABP∽△PCE.故选B.选择支B能否推出△ABP∽△ECP?可以换个角度思考,即当△ABP∽△PCE时,能否求出BP的长呢?不妨设正方形的边长为4a,BP=x,则CP=4a-x,CE=2a,根据相似三角形的对应边成比例可得CBEP=PACB,即2xa=4a4-…  相似文献   

10.
例1如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变郾请试着找一找这个规律,你发现的规律是()郾(A)∠A=∠1+∠2(B)2∠A=∠1+∠2(C)3∠A=∠1+∠2摇摇(D)3∠A=2(∠1+∠2)(2003年北京市海淀区中考题)解延长BE、CD交于A',则∠A'=∠A郾在四边形ADA'E中,∠A+∠ADA'+∠A'+∠A'EA=360°.又∠2+∠ADA'=180°,∠A'EA+∠1=180°,∴∠2+∠ADA'+∠A'EA+∠1=360°郾∴∠A+∠A'=∠1+∠2,即摇2∠A=∠1+∠2郾故选(B)郾评析将任意三角形纸片轻轻一折,却折出了相关角与角之间的规律郾…  相似文献   

11.
学数学,既要善于抓住不变的根本,又要善于灵活地在变化中认识、处理和解决问题。三角形的内角和定理及其推论常常是几何问题中的隐含条件,合理和灵活地应用它们,也常常能使几何题达到一题多解和一题多变的效果。图1一、一题多解例如图1,E为△ABC内一点,求证:(1)∠AEB=∠1+∠2+∠C·(2)∠AEB>∠C·解题思路1:充分利用三角形内角和定理证法1:如图2(1)∵∠1+∠2+∠C+∠3+∠4=180°∴∠1+∠2+∠C=180°-(∠3+∠4)∵在△AEB中,∠AEB=180°-(∠3+∠4)图2∴∠AEB=∠1+∠2+∠C(2)∵∠AEB=∠1+∠2+∠C∴∠AEB-∠C=∠1+∠2>0∴∠AEB>∠…  相似文献   

12.
例1如图1,设O是等边三角形ABC内一点,∠AOB= 115°,∠AOC=125°,则以OA、OB、OC为边所构成的三角形的各内角的度数各是多少?解如图2,把△AOB绕点A逆时针旋转60°得到△ADC,则AD=AO,∠2=∠1.所以∠2+∠3=∠1+∠3 =∠BAC=60°.  相似文献   

13.
应用三角形的内角和定理与外角定理,可以推出许多有趣的结论,现举三例,供同学们参考,希望同学们从中得到启示,学会运用所学知识去探索新结论,从而不断提高自己数学的发现与创新能力. 结论1:在△ABC中,∠B∠C的平分线相交于P点,则∠BPC=90°+1/2∠A 证明:∵∠B、∠C分别平分∠ABC和∠ACB.∴∠PBC=1/2∠ABC,∠PCB=1/2∠ACB,∴∠BPC=180°-(∠PBC+∠PCB)=180°-1/2(∠ABC+∠ACB)=180°-1/2(180°-∠A)=90°+1/2∠A. 结论2:在△ABC中,BP、CP分别是外角平分线,求证:∠BPC=90°-1/2∠A 证明:方法1:∵BP、CP分别平分∠EBC和∠FCB,  相似文献   

14.
1.巧构全等三角形证线段相等例 1.已知 ,如图 ,AB=DE,直线 AE、BD相关于点 O,∠ B与∠ D互补。  求证 :AO=ED。证明 :过点 A作 AC∥ DE交 BD于 C,则∠ D=∠ 2。∵∠ 1 ∠ 2 =180°,∠ B ∠ D=180°,∴∠ 1=∠ B,∴ AB=AC,∴ AB=DE=CA。在△ ACO和△ EDO中 ,∠ AOC=∠ EOD,∠ 2=∠ D,AC=DE;∴△ ACO △ EDO( AAS) ,∴ AO=ED。2 .巧构全等三角形证角相等例 2 .已知等边△ ABC的边长为 a,在 BC的延长线上取一点 D,使 CD=b,在 BA延长线上取一点 E,使 AE=a b。求证 :∠ ECD=∠ EDC。证明 :过 E作 EF∥ AC…  相似文献   

15.
引例如图1,∠DAC是△ABC的一个外角,且∠DAC=2∠B.求证:△ABC是等腰三角形.证明:因为∠DAC=∠B+∠C,∠DAC=2∠B,所以∠B=∠C,即△ABC是等腰三角形.  相似文献   

16.
已知 :如图 1点C是线段AB上一点 ,△ACM、△CBN是等边三角形 ,求证 :AN =BM .(人教版现行初中几何第二册P113第 13题 )。1 设AN与BM的交点是P、AN与MC的交点是G、BM与CN的交点是F ,连结GF、除了可以证明AN =BM外 ,我们还能发现 :(1)由于△ACN≌MCB ,得∠ANC =∠MBC ,易证明△CGN≌△CFB ,可得CG =CF .(2 )在△PFN和△CFB中 ,∠PFN =∠CFB、∠PNF =∠CBF ,利用三角形内角和定理易得∠NPF =∠BCF ,即AN与BM的夹角∠BPN =∠BCN .(3)由于CG =CF、∠GCF =6 0° ,所以△CGF也是等边三角形。(4 )由∠CFG…  相似文献   

17.
不少几何题,可由题设及图形特征,通过边计算边推理进行证明。这是几何证明中常常采用的一种证题方法。 例1 已知:如图1,在△ABC中,∠C=90°,D和E是斜边AB上的点,且AD=AC,BE=BC。求证:∠ECD=45°。证明 ∵ AD=AC,BE=BC。 ∴ ∠1+∠2=∠4=∠3+∠B,① ∠1+∠3=∠5=∠2+∠A,②  相似文献   

18.
设P为△ABC内一点,且上∠PAC=∠PCB=∠PBA=α,则称P为△ABC的勃罗卡点,α为勃罗卡角,(如图1).作为平面几何的亮点名角,二者相辅相存,交相辉映.多层次剖析、全方位透视勃罗卡角,既可以欣赏其优美,领略其精采,又可以激发学习兴趣,磨炼钻研意志.一、勃罗卡角的性质及推论二、性质 如图1,设P为△ABC的勃罗卡点,α为勃罗卡角,则ctgα=ctgA ctgB ctgC勃罗卡角的这一性质定理,证法很多,这里只用一种方法证之.证明:∵∠BPC=∠A ∠C=180°-∠B同理上:∠APB=180°-∠A,∠CPA=∠180°-∠C∴ 在△BPC、△APB中用正弦定理可得:  相似文献   

19.
有关三角形的角度计算是三角形一章中重要问题之一,解决这类问题的方法虽因题而异,但利用列方程求解不失为一种好方法。现举几例加以说明. 例1 已知:如图1,在△ABC中,AB=AC,点D在AC上且BD=BC=AD,求△ABC各角的度数. 解设∠A=x°,∵AD=BD, ∴∠ABD=∠A=x°,∵∠BDC=∠ABD+∠A,∴∠BDC=2x°, ∵AB=AC,BD=BC,∴∠BDC=∠C=∠ABC=2x°. ∵∠A+∠ABC+∠ACB=180°, 即x+2x+2x=180°,∴x=36°∴△ABC中,∠A=36°,∠ABC=∠C=72°, 例2 已知:如图2,在△ABC中,AB=BD=AC,AD=CD,求△ABC各角的度数.解:设∠B=x°,∵AB=AC,AD=CD,∴∠C=∠DAC=∠B=x°,∴∠ADB=∠C+∠DAC=2x°,∵AB=BD,∴∠BAD=∠ADB=2x°,  相似文献   

20.
例1(2011年四川泸州中考)如图*,点P为等边△ABC外接圆周劣弧BC上的一点.(1)求∠BPC的度数;(2)求证:PA=PB+PC;(3)设PA,BC交于点M,若AB=4,PC=2,求CM的长度.解析:这是一例延用许多年的经典问题.其中(1)较为简单,由"圆周角"定理易知:∠APB=∠ACB=60°,∠APC=∠ABC=60°,则∠BPC=∠APB+∠APC=60°+60°=120°.对于(3),解法较少,不做过多探究:由∠ABM=∠CPM,∠AMB=∠CMP,可得△ABM∽△CPM,则AMCM=BMPM=ABPC=42=2,设CM=x,则AM=2x,结合BC=AB=4,可知BM=  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号