首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
<正>二次函数的解析式有三种形式,一般式:f(x)=ax2+bx+c(a≠0),顶点式:f(x)=a(x-h)2+k(a≠0),零点式:f(x)=a(xx1)(x-x2)(a≠0).许多同学不太关注零点式,认为它几无用处.事实上,灵活地使用二次函数零点式,可以达到事半功倍的效果,还常常让人有"柳暗花明又一村"的感慨.  相似文献   

2.
对于二次函数f(x)=αx^2 bx c(α≠0),若方程f(x)=0有两个根x1、x2,则有零点式f(x)=α(x-x1)(x-x2).运用二次函数零点式,可使一些问题得到简解.下面略举几例.  相似文献   

3.
对于二次函数f(x)=ax2+bx+c(a≠0),如果方程f(x)=0的两个实根为x1,x2,那么二次函数f(x)可写成f(x)=a(x+x1)(x-x2),这就是二次函数的“两根式”.灵活地运用二次函数的两根式,可以巧妙地解决一些不等式问题. 例1 已知二次函数f(x)=x2+ax+b(a、b∈R). (1)若方程f(x)=0有两个非整数实根,且这两实根在相邻两整数之间,试证  相似文献   

4.
内容概述二次函数的解析式由条件确定二次函数的解析式需要三个独立的条件,一般有如下三种特定形式:1.一般式y=ax2+bx+c(a≠0)2.顶点式y=a(x-m)2+h(a≠0)3.分解式y=a(x-x1)(x-x2)(a≠0)二次函数的最值对二次函数f(x)=ax2+bx+c(a≠0)若自变量x为任意实数,其最值情况为:当a>0,x=-b/2a,fmin=4ac-b2/4a;当a<0,x=-b/2a,fmax=4ac-b2/4a.若自变量x在范围x1≤x≤x2上取值时,其最值情况为:对a>0,有如下结论:  相似文献   

5.
三次函数f(x)=ax3 bx2 cx d(a≠0)已经成为中学阶段一个重要的函数.本文给出并证明三次函数的三个性质,并例说性质的应用.函数f(x)=ax3 bx2 cx d(a≠0)的导函数为f/(x)=3ax2 2bx c.导函数的对应方程为f/(x)=0即3ax2 2bx c=0,其判别式Δ=4(b2-3ac).若Δ>0,设其两根为x1、x2,并设x1相似文献   

6.
<正>二次函数的一般表达式为f(x)=ax2+bx+c(a≠0),配方后可以表示为f(x)=a(x-h)2+k,如果它的图象与x轴有两个不同的交点x1,x2,还可表示为f(x)=a(x-x1)(x-x2).这样二次函数就有了三种不同的表达形式,在不同的问题中选择合适的表达形式对于快速准确地解决问题有着至关重要的作用.本文就f(x)=a(x-x1)(x-x2)的应用作一下探讨.  相似文献   

7.
设一元二次方程ax2 bx c=0(a≠0)(1),其实根为x1,x2.对应的二次函数为f(x)=ax2 bx c(a≠0),则f(0)=c.1一元二次方程根的基本分布———零分布所谓一元二次方程根的零分布,指的是  相似文献   

8.
一元二次方程ax2+bx+c=0(a≠0)根的分布问题,实质上是函数 f(x)=ax2+bx+c(a≠0)的零点分布问题,即抛物线与x轴的交点问题.下面从两个视角审视一元二次方程根的分布问题:(1)方程视角(韦达定理法);(2)函数视角(图象法).设一元二次方程ax2+bx+c=0(a≠ 0)的两根为x1、x2,m、n、p、q∈R,则有:  相似文献   

9.
<正>我们知道,二次函数有三种形式,分别是一般式、顶点式、双根式.其中双根式可以把一般式y=ax2+bx+c(a≠0)表示为y=a(x-x1)(x-x2)(a≠0),其中x1,x2为方程ax2+bx+c=0的两根.对于双根式的应用,笔者通过翻阅大量资料发现,其应用大都仅仅局限于二次函数方面,似乎不能在其他方面发挥功效,笔者又在知网上搜索双根法的相关文章,也不能  相似文献   

10.
这里挖掘二次函数的一个重要性质以及在解题过程中的具体应用.性质如果二次函数f(x)=ax2 bx c(a≠0)有两个不相等的实数根x1、x2且x10.b2-4ac>0.证明:①由二次函数有两个不相等的实数根x1、x2.故原二次函数可写为f(x)=a(x-x1)(x-x2)且b2-4ac>0.由x10,x-x2<0,故a f(x)=a2(x-x1)(x-x2)<0,其逆也真.②由x0,x-x2>0,故a f(x)=a2(x-x1)(x-x2)>0且b2-4ac>0.其逆也真.(得证)图1图2我们从二次函数的图象也可以直观地看出:当a>0时(如…  相似文献   

11.
<正>命题1函数f(x)=ax+b(a≠0)满足:f(x_1)f(x_2)<0,则■x_0∈(x_1,x_2),有f(x_0)=0.证明:函数f(x)=ax+b的零点即方程ax+b=0的根,b由a≠0知方程ax+b=0有实数根x_0=-a/b,即f(x_0)=0,所以只需证x_0=-∈(x,由f(x_1)f(x_2)<0得(ax_1+b)(ax_2+b)<0即:  相似文献   

12.
妙用零点式     
二次函数的解析式有如下三种形式(1)一般式y=ax2 bx c(a≠0); (2)顶点式y=a(x-m)2 n(a≠0); (3)零点式y=a(x-x1)(x-x2)(a≠0). 而用零点式解决问题,常能起到简化的作  相似文献   

13.
这是一堂关于函数表达式的习题课,教学对象是高一学生.问题:已知f(2x+1)=x2-2x,求f(x)与f(2x-1)的解析式.学生解法:设f(x)=ax2+bx+c(a≠0),则f(2x+1)=4ax2+(4a+2b)x+a+b+c=x2-2x.易得4a=1,4a+2b=-2,a+b+c=0,解得a=14,b=-32,c=54,所以f(x)=14x2-32x+54,f(2x-1)=x2-4x+3.师:为什么可以"设f(x)=ax2+bx+c(a≠0)"?生1:因为可以推测f(x)一定是二次函数.如果f(x)不是二次函数,则f(2x+1)的解析式也不会是二  相似文献   

14.
二次函数f(x)=ax2+bx+c(a≠0),若a>0,△=b2-4ac≤0,则f(x)≥0;若a<0,△=b2-4ac≤0,则f(x)≤0. 二次方程ax2+bx+c=0(a≠0)有实根,则△=b2-4ac≥0. 以上性质,我们可以用来证明不等式. 例1 已知a,b∈R,且b>0.求证:a2+b2>3a-2ab-3. 证明:被证不等式可变形为  相似文献   

15.
在文[1]中笔者给出了13届“希望杯”高一赛题的一个推广,现记为推广1已知f(x)=ax2 bx(a≠0),若f(m) =f(n),m≠n,则f(m n)=0. 本文继续推广该赛题,并联想等差数列中一个相似的性质. 推广2 已知f(x)=ax2 bx c(a≠0),若f(m)=f(n),m≠n,则f(m n)=c. 证明根据题意可得f(m)=am2 bm十c,  相似文献   

16.
三次函数的一般形式为f(x)=ax3+bx2+cx+d(a≠0,a,b,c,d是常数),其导函数为f′(x)=3ax2+2bx+c,判别式为Δ=4b2-12ac,则函数f(x)的图像为如下几种情形:  相似文献   

17.
以函数f(x)=lg(ax2 bx c)为载体求参数范围的问题.本文就此类函数定义域和值域分别为R的实质含义作出等价“转译”.1·解剖问题得出结论f(x)=lg(ax2 bx c)(a≠0)的定义域为R的等价说法是什么呢?容易看出,其实质等价于:当x∈R时,ax2 bx c>0恒成立,那么问题就转化为二次函数:y=ax2 bx c>0恒成立,则等价于a>0Δ<0(其中Δ=b2-4ac,下同)f(x)=lg(ax2 bx c)(a≠0)的值域为R的等价说法又是什么呢?注意到当y=lgx的定义域为(0, ∞)时,其值域为R,即y=lgx的值域为R是由其定义域决定的,若定义域不是(0, ∞),那么值域也就不是R了.如此,若f(x)=lg(ax2 bx…  相似文献   

18.
一元二次方程、一元二次不等式、二次函数简称为“三个二次”,它们互相联系、互相渗透,组成了一个特殊的知识板块,是一个有机的整体,利用转化化归的思想来解决有关“三个二次”之间的问题,能使复杂的问题简单化,抽象的问题具体化,起到化难为易、化生为熟、化繁为简,从而达到简易求解的效果.1基础知识1.1二次函数的三种形式1)一般式:f(x)=ax2 bx c(a≠0);2)顶点式:f(x)=a(x-h)2 k(a≠0);3)两根式:f(x)=a(x-x1)(x-x2)(a≠0).1.2二次函数的性质1)函数图像为抛物线.a>0时,开口向上,a<0时开口向下.顶点坐标-b2a,4ac-b24a或(h,k).2)对称性:关于直…  相似文献   

19.
一、延伸知识 1.三次方程的韦达定理:设三次方程ax3+ bx2+cx+d=0(a≠0)的三个根分别是x1,x2,x3,则有: { x1+ x2+x3=-b/a, x1x2+x2x3+x3x1=c/a, x1x2x3=-d/a. 这个定理的证明,只需把式子ax3 +bx2 +cx+d=a(x-x1) (x-x2) (x-x3)展开,比较x的同次项的系数即可. 2.行列式的基本知识.  相似文献   

20.
文献[1]~[3]对二次函数f(x)=x2+bx+c的迭代进行了探讨,其中文献[2]、[3]得到了关于方程f2(x)=x在特殊情形下根的一个结论:设f(x)=x2+bx+c,记Δ0=(b-1)2-4c,若方程f(x)=x有2个不等实根,则1)当0<Δ0<4时,f2(x)=x只有2个不等实根;2)当Δ0>4时,f2(x)=x有4个不等实根.方程f2(x)=x中的f2(x)为f2(x)=f(f(x)),一般地有fn(x)=f(fn-1(x)).本文将考虑一般二次函数f(x)=ax2+bx+c(其中a≠0且a,b,c∈R)的迭代,用初等方法给出  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号