首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The non-motorized treadmill system initially reported by Lakomy in 1984 has been used extensively to assess sprinting performance. However, there has been limited research into the reliability of power output measurement using such systems. The aim of this study was to design a system and protocol capable of measuring treadmill sprinting performance in rugby players and to assess the reliability of this system for measuring power output. Twenty-seven rugby players, all of whom were familiar with treadmill sprinting, performed three maximal 6 s sprints with 2 min recovery between sprints, on two occasions 1 week apart. Both tests were performed on a non-motorized Woodway tramp treadmill, interfaced to a data acquisition system. There were no significant differences ( P > 0.05) between power output for repeated trials on the same day (between trials) or for repeated trials on different days (between days). Limits of agreement for maximum average power (the average of 100 readings per second) were 4 - 98 and 30 - 157 W for between trials and between days, respectively. When reported as ratio limits of agreement, these were 1.07 (*/ 1 1.12) and 1.03 (*/ 1 1.16), respectively. The limits of agreement for maximum instantaneous power (the highest of 100 readings per second) were 51 - 464 and 105 - 588 W for between trials and between days, respectively. When reported as ratio limits of agreement, these were 1.02 (*/ 1 1.20) and 1.04 (*/ 1 1.21) for between trials and between days, respectively. The coefficients of variation for all measures of power output were less than 9.3%. Hence, the treadmill system and protocol developed in this study provide a reliable measure of power output for rugby players.  相似文献   

2.
Different methods of ball carrying can be used when a player runs with the ball in rugby union. We examined how three methods of ball carrying influenced sprinting speed: using both hands, under the left arm and under the right arm. These methods were compared with running without the ball. Our aim was to determine which method of ball carrying optimizes sprinting speed. Altogether, 48 rugby union players (age 21 +/- 2 years, height 1.83 +/- 0.1 m, body mass 85.3 +/- 12 kg, body fat 14 +/- 5%; mean +/- s) were recruited. The players performed twelve 30-m sprints in total (each player performed three trials under each of three methods of carrying the ball and sprinting without the ball). The design of the study was a form of Latin rectangle, balanced across the trial order for each of the methods and for pairwise combinations of the methods in blocks of four per trial. Each sprint consisted of a 10-m rolling start, followed by a 20-m timed section using electronic timing gates. Compared with sprinting 20 m without the ball (2.58 +/- 0.16 s), using both hands (2.62 +/- 0.16 s) led to a significantly slower time (P < 0.05). Sprinting 20 m with the ball under the left arm (2.61 +/- 0.15 s) or under the right arm (2.60 +/- 0.17 s) was significantly quicker than when using 'both hands' (P < 0.05), and both these methods were significantly slower than when running without the ball (P < 0.05). Accordingly, running with the ball in both hands led to the greatest decrement in sprinting performance, although carrying the ball under one arm also reduced the players' sprinting ability. Our results indicate that to gain a speed advantage players should carry the ball under one arm.  相似文献   

3.
Six games players (GP) and six endurance-trained runners (ET) completed a standardized multiple sprint test on a non-motorized treadmill consisting of ten 6-s all-out sprints with 30-s recovery periods. Running speed, power output and oxygen uptake were determined during the test and blood samples were taken for the determination of blood lactate and pH. Games players tended to produce a higher peak power output (GP vs ET: 839 +/- 114 vs 777 +/- 89 W, N.S.) and higher peak speed (GP vs ET: 7.03 +/- 0.3 vs 6.71 +/- 0.3 m s-1, N.S.), but had a greater decrement in mean power output than endurance-trained runners (GP vs ET: 29.3 +/- 8.1% vs 14.2 +/- 11.1%, P less than 0.05). Blood lactate after the test was higher for the games players (GP vs ET: 15.2 +/- 1.9 vs 12.4 +/- 1.7 mM, P less than 0.05), but the decrease in pH was similar for both groups (GP vs ET: 0.31 +/- 0.08 vs 0.28 +/- 0.08, N.S.). Strong correlations were found between peak blood lactate and peak speed (r = 0.90, P less than 0.01) and between peak blood lactate and peak power fatigue (r = 0.92, P less than 0.01). The average increase in oxygen uptake above pre-exercise levels during the sprint test was greater for endurance-trained athletes than for the games players (ET vs GP: 35.0 +/- 2.2 vs 29.6 +/- 3.0 ml kg-1 min-1, P less than 0.05), corresponding to an average oxygen uptake per sprint (6-s sprint and 24 s of subsequent recovery) of 67.5 +/- 2.9% and 63.0 +/- 4.5% VO2 max respectively (N.S.). A modest relationship existed between the average increase in oxygen uptake above pre-exercise values during the sprint test and mean speed fatigue (r = -0.68, P less than 0.05). Thus, the greater decrement in performance for the games players may be related to higher glycolytic rates as reflected by higher lactate concentrations and to their lower oxygen uptake during the course of the 10 sprints.  相似文献   

4.
Repeated bouts of sprint running after induced alkalosis.   总被引:1,自引:0,他引:1  
Seven healthy male subjects performed 10 maximal 6-s sprints, separated by 30-s recovery periods, on a non-motorized treadmill. On two occasions, separated by 3 days, the subjects ingested a solution of either sodium bicarbonate (NaHCO3; alkaline) or sodium chloride (NaCl; placebo), 2.5 h prior to exercise. The doses were 0.3 g kg-1 body mass for the alkaline treatment and 1.5 g total for the placebo, dissolved in 500 ml of water. The order of testing was randomly assigned. Pre-exercise blood pH was 7.43 +/- 0.02 and 7.38 +/- 0.01 for the alkaline and placebo trials respectively (P less than 0.01). Performance indices (i.e. mean and peak power outputs and mean and peak running speeds) were significantly reduced as a result of the cumulative effects of successive sprints, but not significantly affected by the treatments. However, the total work done (i.e. mean power output) in the alkaline condition was 2% higher than that achieved in the placebo condition. Post-exercise blood lactate concentrations were higher for the alkaline treatment than for the placebo condition (15.3 +/- 3.7 vs 13.6 +/- 3.0 mM respectively; P less than 0.01), but blood pH was similar in both conditions (alkaline: 7.15 +/- 0.13; placebo: 7.09 +/- 0.11). In both conditions, a relationship was found between post-exercise blood lactate and mean power output (alkaline: r = 0.82, P less than 0.01; placebo: r = 0.79, P less than 0.01). No significant differences were found in VE, VO2 and VCO2 between the two experimental conditions. This study demonstrates that alkali ingestion results in significant shifts in the acid-base balance of the blood, but has no effect on the power output during repeated bouts of brief maximal exercise.  相似文献   

5.
There are several ways of carrying the ball in rugby union, which could influence the speed at which a player can run. We assessed 52 rugby players (34 males, 18 females) during a maximum sprint over 30 m without the ball, with the ball under one arm, and with the ball in both hands. Timing gates were used to measure time over the initial 10 m and the last 20 m. It has previously been reported (Grant et al., 2003) that running with the ball produces a slower sprinting speed than running without the ball. We hypothesized that the decrease in speed caused by carrying the ball would become less marked with the experience of the player. The male and female players were each divided into two groups: a "beginner" group that consisted of players in their first or second season and an "experienced" group that was composed of players who had played for more than two seasons. A 2 x 3 mixed-model analysis of variance was used to identify differences (P < 0.01) between the beginner and experienced groups in the three sprinting conditions. The times for the males for the first 10 m sprints without the ball, with the ball under one arm, and with the ball in both hands were 1.87 +/- 0.08 s, 1.87 +/- 0.08 s, and 1.91 +/- 0.1 s for the beginners, and 1.87 +/- 0.1, 1.88 +/- 0.1 and 1.88 +/- 0.12 for the more experienced players respectively. The times for the females for the first 10 m without the ball, with the ball under one arm, and with the ball in both hands were 2.13 +/- 0.16 s, 2.19 +/- 0.17 s, and 2.20 +/- 0.16 s for the beginners, and 2.03 +/- 0.12 s, 2.03 +/- 0.09 s, and 2.04 +/- 0.1 s for the more experienced players respectively. For the last 20 m of the 30-m sprint, there were differences between the different sprint conditions (P < 0.001) but no differences that were attributable to experience (P = 0.297). The times for the males over the last 20 m without the ball, with the ball under one arm, and with the ball in both hands were 2.58 +/- 0.19 s, 2.61 +/- 0.12 s, and 2.65 +/- 0.12 s for the beginners, and 2.59 +/- 0.12, 2.62 +/- 0.23, and 2.65 +/- 0.18 s for the more experienced players respectively. The times for the females over the last 20 m without the ball, with the ball under one arm, and with the ball in both hands were 3.25 +/- 0.38 s, 3.35 +/- 0.42 s, and 3.40 +/- 0.46 s for the beginners, and 3.04 +/- 0.32 s, 3.06 +/- 0.22 s, and 3.13 +/- 0.27 s for the more experienced players respectively. No gender-specific differences were detected. The results of this study suggest that practising sprints while carrying a ball benefits the early phase of sprinting while carrying the ball.  相似文献   

6.
Limited information exists about the movement patterns of field-hockey players, especially during elite competition. Time-motion analysis was used to document the movement patterns during an international field-hockey game. In addition, the movement patterns of repeated-sprint activity were investigated, as repeated-sprint ability is considered to be an important fitness component of team-sport performance. Fourteen members of the Australian men's field-hockey team (age 26+/-3 years, body mass 76.7+/-5.6 kg, VO2max 57.9+/-3.6 ml.kg(-1).min(-1); mean+/-s) were filmed during an international game and their movement patterns were analysed. The majority of the total player game time was spent in the low-intensity motions of walking, jogging and standing (46.5+/-8.1, 40.5+/-7.0 and 7.4+/-0.9%, respectively). In comparison, the proportions of time spent in striding and sprinting were 4.1+/-1.1 and 1.5+/-0.6%, respectively. Our criteria for 'repeated-sprint' activity (defined as a minimum of three sprints, with mean recovery duration between sprints of less than 21 s) was met on 17 occasions during the game (total for all players), with a mean 4+/-1 sprints per bout. On average, 95% of the recovery during the repeated-sprint bouts was of an active nature. In summary, the results suggest that the motion activities of an elite field-hockey competition are similar to those of elite soccer, rugby and Australian Rules football. In addition, the investigation of repeated-sprint activity during competition has provided additional information about the unique physiological demands of elite field-hockey performance.  相似文献   

7.
Different methods of ball carrying can be used when a player runs with the ball in rugby union. We examined how three methods of ball carrying influenced sprinting speed: using both hands, under the left arm and under the right arm. These methods were compared with running without the ball. Our aim was to determine which method of ball carrying optimizes sprinting speed. Altogether, 48 rugby union players (age 21±2 years, height 1.83±0.1?m, body mass 85.3±12?kg, body fat 14?±?5%; mean±s) were recruited. The players performed twelve 30-m sprints in total (each player performed three trials under each of three methods of carrying the ball and sprinting without the ball). The design of the study was a form of Latin rectangle, balanced across the trial order for each of the methods and for pairwise combinations of the methods in blocks of four per trial. Each sprint consisted of a 10-m rolling start, followed by a 20-m timed section using electronic timing gates. Compared with sprinting 20?m without the ball (2.58±0.16?s), using both hands (2.62±0.16?s) led to a significantly slower time (P?<0.05). Sprinting 20?m with the ball under the left arm (2.61±0.15?s) or under the right arm (2.60± 0.17?s) was significantly quicker than when using ‘both hands’ (P?<0.05), and both these methods were significantly slower than when running without the ball (P?<0.05). Accordingly, running with the ball in both hands led to the greatest decrement in sprinting performance, although carrying the ball under one arm also reduced the players' sprinting ability. Our results indicate that to gain a speed advantage players should carry the ball under one arm.  相似文献   

8.
There has been no previous investigation of the concurrent validity and reliability of the current 5 Hz global positioning system (GPS) to assess sprinting speed or the reliability of integrated GPS-accelerometer technology. In the present study, we wished to determine: (1) the concurrent validity and reliability of a GPS and timing gates to measure sprinting speed or distance, and (2) the reliability of proper accelerations recorded via GPS-accelerometer integration. Nineteen elite youth rugby league players performed two over-ground sprints and were simultaneously assessed using GPS and timing gates. The GPS measurements systematically underestimated both distance and timing gate speed. The GPS measurements were reliable for all variables of distance and speed (coefficient of variation [CV] = 1.62% to 2.3%), particularly peak speed (95% limits of agreement [LOA] = 0.00 ± 0.8 km · h(-1); CV = 0.78%). Timing gates were more reliable (CV = 1% to 1.54%) than equivalent GPS measurements. Accelerometer measurements were least reliable (CV = 4.69% to 5.16%), particularly for the frequency of proper accelerations (95% LOA = 1.00 ± 5.43; CV = 14.12%). Timing gates and GPS were found to reliably assess speed and distance, although the validity of the GPS remains questionable. The error found in accelerometer measurements indicates the limits of this device for detecting changes in performance.  相似文献   

9.
The aim of this study was to determine whether the physiological characteristics of players influence selection in a semi-professional first grade rugby league team. Sixty-six semi-professional rugby league players aged 24+/-4 years (mean +/- s) were monitored over two competitive seasons. The players underwent measurements of body mass, muscular power (vertical jump), speed (10, 20, 30 and 40 m sprint), agility (Illinois agility run) and estimated maximal aerobic power (multi-stage fitness test) 1 week before their first competition match. After selection for either the first or second grade team, the results of all physiological tests were collated and analysed to determine if there were any physiological differences between players selected for the two teams. Players selected to play in the first grade team were significantly (P< 0.05) older (25+/-4 vs 22+/-4 years) and heavier (93+/-10 vs 86+/-10 kg) and had more playing experience (18+/-6 vs 15+/-6 years) than second grade players. Muscular power, speed, agility and estimated maximal aerobic power were not significantly different (P > 0.05) between first grade and second grade players. These results suggest that the physiological capacities of players do not influence selection in a semi-professional first grade rugby league team. Rather, player selection appears to be based on body mass, playing experience and skill. These results support the need for a standardized skills performance test for semi-professional rugby league players.  相似文献   

10.
The aim of this study was to quantify movements of Super 12 rugby players in competition because information on elite rugby players' movements is unavailable. Players were categorized into forwards [front (n = 16) and back row (n = 15)] and backs [inside (n = 9) and outside backs (n = 7)] and their movements analysed by video-based time motion analysis. Movements were classified as rest (standing, walking and jogging) and work (striding, sprinting, static exertion, jumping, lifting or tackling). The total time, number and duration of individual activities were assessed, with differences between groups evaluated using independent sample t-tests (unequal variances), while differences between halves were assessed with paired sample t-tests. Forwards had 7:47 min:s (95% confidence limits: 6:39 to 8:55 min:s, P<0.01) more time in static exertion than backs, but backs spent 0:52 (0:34 to 1:09, P = 0.01) min:s more time sprinting than forwards, and had a 0.7 (0.3 to 1.2, P = 0.01) s longer duration of each sprint. Forwards spent 7:31 (5:55 to 9:08) min:s more time in work activities (P = 0.01) and had 2.1 (1.3 to 2.8) s longer work durations (P<0.01) than backs. The results indicate frequent short duration (<4 s) work efforts followed by moderate duration (<20 s) rest for forwards, and extended (>100 s) rest duration for backs. High-intensity efforts involved static exertion for forwards (mean +/- standard deviation frequency = 80 +/- 17) and sprinting for backs (27 +/- 9). In conclusion, after nearly a decade since becoming professional, elite rugby union is still characterized by highly intense, intermittent movement patterns and marked differences in the competition demands of forwards and backs.  相似文献   

11.
ABSTRACT

The speed performance is involved not only in linear sprints, but also in a wide spectrum of multi-directional movements, such as curve sprinting. Curved sprint can be defined as sprint with gradual and continuous change of direction (COD). Although ~85% of the actions performed at maximum velocity in a professional soccer league are curvilinear sprints, there is not any specific test to assess this ability. This study aimed to analyse the reliability of a new curve sprint test, and compare its results with those obtained by soccer players in linear sprint. Forty experienced soccer players performed 3 attempts of curve sprint (using the penalty arc) to right and left side (17 m), and 3 linear sprints (17 m) in two different days. The ICCs (inter-session reliability) were 0.93 for sprint curve right side (CSRS) and 0.89 for sprint curve left side (CSLS), considered “acceptable”. The CVs (intra-session reliability) were 0.87% in CSRS and 1.15% in CSLS. The coefficient of determination (R2) between linear and curve sprinting was ~35%. The association between curve sides was “very large” (r = 0.878; p < 0.01). In summary, we showed that “curve sprint test” is highly reliable, and that curvilinear and linear sprints are different and independent actions.  相似文献   

12.
The aim of this study was to compare sprint performance over 10 and 20 m when participants ran while towing resistances, weighing between 0 and 30% of body mass. The sample of 33 participants consisted of male rugby and soccer players (age 21.1 +/- 1.8 years, body mass 83.6 +/- 13.1 kg, height 1.82 +/- 0.1 m; mean +/- s). Each participant performed two sets of seven sprints over 20 m using a Latin rectangular design. The times were recorded at 10 and 20 m using electronic speed gates. The sprints of 13 players were video-recorded to allow calculation of stride length and frequency. For both sprints, a quadratic relationship was observed between sprint time and resistance as sprint time increased from 2.94 s to 3.80 s from 0 to 30% resistance. This relationship was statistically significant but considered not to be meaningful for performance because, over the range of resistances used in this study, the quadratic model was never more than 1% (in terms of sprint time) from the linear model. As resistance increased, the stride length shortened, with mean values of 1.63 +/- 0.13 m at 0% body mass and 1.33 +/- 0.13 m at 30% of body mass. There was no significant change in stride frequency with increasing resistance. The results show that in general there is an increase in sprint time with an increase in resistance. No particular resistance in the range tested (0 - 30%) can be recommended for practice.  相似文献   

13.
Seven 6 s sprints with 30 s recovery between sprints were performed against two resistive loads: 50 (L50) and 100 (L100) g x kg(-1) body mass. Inertia-corrected and -uncorrected peak and mean power output were calculated. Corrected peak power output in corresponding sprints and the drop in peak power output relative to sprint 1 were not different in the two conditions, despite the fact that mean power output was 15-20% higher in L100 (P < 0.01). The effect of inertia correction on power output was more pronounced for the lighter load (L50), with uncorrected peak power output in sprint 1 being 42% lower than the corresponding corrected peak power output, while this was only 16% in L100. Fatigue assessed by the drop in uncorrected peak and mean power output in sprint 7 relative to sprint 1 was less compared with that obtained by corrected power values, especially in L50 (drop in uncorrected vs. corrected peak power output: 13.3 +/- 2.2% vs. 23.1 +/- 4.1%, P < 0.01). However, in L100, the difference between the drop in corrected and uncorrected mean power output in sprint 7 was much smaller (24.2 +/- 3.1% and 21.2 +/- 2.7%, P < 0.01), indicating that fatigue may be safely assessed even without inertia correction when a heavy load is used. In conclusion, when inertia correction is performed, fatigue during repeated sprints is unaffected by resistive load. When inertia correction is omitted, both power output and the fatigue profile are underestimated by an amount dependent on resistive load. In cases where inertia correction is not possible during a repeated sprints test, a heavy load may be preferable.  相似文献   

14.
Abstract

There has been no previous investigation of the concurrent validity and reliability of the current 5 Hz global positioning system (GPS) to assess sprinting speed or the reliability of integrated GPS–accelerometer technology. In the present study, we wished to determine: (1) the concurrent validity and reliability of a GPS and timing gates to measure sprinting speed or distance, and (2) the reliability of proper accelerations recorded via GPS–accelerometer integration. Nineteen elite youth rugby league players performed two over-ground sprints and were simultaneously assessed using GPS and timing gates. The GPS measurements systematically underestimated both distance and timing gate speed. The GPS measurements were reliable for all variables of distance and speed (coefficient of variation [CV] = 1.62% to 2.3%), particularly peak speed (95% limits of agreement [LOA] = 0.00 ± 0.8 km · h?1; CV = 0.78%). Timing gates were more reliable (CV = 1% to 1.54%) than equivalent GPS measurements. Accelerometer measurements were least reliable (CV = 4.69% to 5.16%), particularly for the frequency of proper accelerations (95% LOA = 1.00 ± 5.43; CV = 14.12%). Timing gates and GPS were found to reliably assess speed and distance, although the validity of the GPS remains questionable. The error found in accelerometer measurements indicates the limits of this device for detecting changes in performance.  相似文献   

15.
In this study, we examined whether a preparatory perceptual 'anchoring' technique would enhance the reproducibility (test-retest reliability) of adolescent children in their ability to self-regulate their exercise output on the basis of their effort perceptions. Forty-one adolescents aged 12.6 +/- 0.7 years (mean +/- s), randomly assigned to either an anchor or non-anchor group, undertook two identical production trials (three 3-min cycle ergometer bouts at levels 3, 6 and 8 of the Children's Effort Rating Table) over 8 days. Before each trial, the anchor group received an experiential (exercise) trial intended to provide a frame of reference for their perceived exertions. The test-retest reproducibility of the heart rates and power outputs produced during the production trials was assessed using intraclass correlation coefficients and 95% limits of agreement analysis. For the anchor group, the intraclass correlation coefficients ranged from 0.68 to 0.81 for heart rate and from 0.39 to 0.86 for power output. For the non-anchor group, they were generally higher: 0.86 to 0.93 and 0.81 to 0.95 for heart rate and power output, respectively. The 95% limits of agreement indicated no marked differences between the two groups in the amount of bias and within-subject error. The results suggest that among these adolescents, the implementation of an experiential anchoring protocol had no positive effect on the reproducibility of their exercise regulation during prescribed cycling.  相似文献   

16.
The purpose of this study was to quantify the reliability of kinematic and kinetic variables using a sample of pre-peak-height-velocity (PHV) male athletes sprinting on a non-motorised treadmill. Following variables were measured and their normative data presented, average and peak velocity, average and peak power, average and peak horizontal force, average and peak vertical force, average step frequency, average step length, average work. Twenty-five participants performed three 5-s all-out sprints from a standing split start on a non-motorised treadmill on three separate occasions. Per cent change in the means (-3.66 to 3.35%) and coefficients of variation (0.56–7.81%) were thought reliable for all variables. However, average step rate, average horizontal force and average vertical force did not meet the standards (≥0.70) set for acceptable intraclass correlation coefficients (ICC). Due to the homogeneous group, it was expected to receive low ICC values. Therefore, youth sprinting performance can be tested reliably on a non-motorised treadmill, especially if the per cent change in the mean and CV are deemed the important reliability measures. Normative data are given for the participant’s age as well as their maturity level for kinematic and kinetic variables.  相似文献   

17.
Abstract

This study investigated the relationship between the physical abilities of adolescent rugby league players and tackling and ball-carrying skills performed during matches, across three seasons (under-15 to under-17). The players were measured each season for acceleration (10–30 m), peak and mean speed (10–30 m), sprinting force (10–30 m), aerobic power, counter-movement jump (CMJ) height and jumping power. The matches were filmed and analysed for ball-carrying and tackling frequency per minute (successful and unsuccessful outcomes). There were strong relationships between successful carries?min–1 and 10 m force in the under-15 (R = 0.61, P < 0.001), under-16 (R = 0.69, P < 0.001) and under-17 groups (R = 0.64, P < 0.001). There were also strong and moderate relationships between predicted vertical power and successful carries?min–1 in the under-15 (R = 0.63, P = 0.011) and under-17 group (R = 0.40, P = 0.030), respectively. There were no relationships between carries or tackles and any other performance indicators. These findings suggest that acceleration, in accordance with gains in body mass, support ball-carrying but not tackling performance. Performance measurements, such as CMJ or aerobic power, do not support ball-carrying ability among youth rugby league players.  相似文献   

18.
It has been suggested that assessment of high-intensity activities during a match is a valid measure of physical performance in elite soccer. Recently, sprinting activities have been analysed in more depth. The aim of this study was to develop a detailed analysis of the sprinting activities of different playing positions during European Champions League and UEFA Cup competitions. Altogether, 717 elite outfield soccer players were evaluated throughout 2002-2006 using ProZone? (Leeds, UK). Sprinting (explosive and leading) was analysed for each playing position. To compare positional differences, a Kruskal-Wallis analysis was performed. Differences were found among positions for total number of sprints and total sprint distance covered: wide midfielders > (attackers = wide defenders) > central midfielders > central defenders (P < 0.001), as well as for explosive sprints: (wide midfielders = attackers = wide defenders) > central defenders, wide midfielders > central midfielders > central defenders and attackers = wide defenders = central midfielders (P < 0.001), and leading sprints: wide midfielders > (attackers = wide defenders) > central midfielders > central defenders (P < 0.001). For each group, there were no differences in ratio of explosive to leading sprints. Wide midfielders performed a higher number of sprints in all five distance categories than all other positions. This study showed that sprinting characteristics are influenced by position. Wide midfielders have to complete additional high-intensity activities during training sessions compared with the other positions to achieve the performance level required during the match.  相似文献   

19.
The aim was to compare the physical characteristics of under-18 academy and schoolboy rugby union competition by position (forwards and backs). Using a microsensor unit, match characteristics were recorded in 66 players. Locomotor characteristics were assessed by maximum sprint speed (MSS) and total, walking, jogging, striding and sprinting distances. The slow component (<2 m · s?1) of PlayerLoadTM (PLslow), which is the accumulated accelerations from the three axes of movement, was analysed as a measure of low-speed activity (e.g., rucking). A linear mixed-model was assessed with magnitude-based inferences. Academy forwards and backs almost certainly and very likely covered greater total distance than school forwards and backs. Academy players from both positions were also very likely to cover greater jogging distances. Academy backs were very likely to accumulate greater PLslow and the academy forwards a likely greater sprinting distance than school players in their respective positions. The MSS, total, walking and sprinting distances were greater in backs (likely-almost certainly), while forwards accumulated greater PLslow (almost certainly) and jogging distance (very likely). The results suggest that academy-standard rugby better prepares players to progress to senior competition compared to schoolboy rugby.  相似文献   

20.
Limited information exists about the movement patterns of field-hockey players, especially during elite competition. Time–motion analysis was used to document the movement patterns during an international field-hockey game. In addition, the movement patterns of repeated-sprint activity were investigated, as repeated-sprint ability is considered to be an important fitness component of team-sport performance. Fourteen members of the Australian men's field-hockey team (age 26±3 years, body mass 76.7±5.6?kg, [Vdot]O2max 57.9±3.6?ml?·?kg?1?·?min?1; mean±s) were filmed during an international game and their movement patterns were analysed. The majority of the total player game time was spent in the low-intensity motions of walking, jogging and standing (46.5±8.1, 40.5±7.0 and 7.4±0.9%, respectively). In comparison, the proportions of time spent in striding and sprinting were 4.1±1.1 and 1.5±0.6%, respectively. Our criteria for ‘repeated-sprint’ activity (defined as a minimum of three sprints, with mean recovery duration between sprints of less than 21?s) was met on 17 occasions during the game (total for all players), with a mean 4±1 sprints per bout. On average, 95% of the recovery during the repeated-sprint bouts was of an active nature. In summary, the results suggest that the motion activities of an elite field-hockey competition are similar to those of elite soccer, rugby and Australian Rules football. In addition, the investigation of repeated-sprint activity during competition has provided additional information about the unique physiological demands of elite field-hockey performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号