首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一、复合函数复合函数的单调性,可利用"同增异减"来确定例1求函数y=(x~2-2008x)~(1/2)的单调递增区间.解:首先,由x~2-2008x≥0,得x≤0或x≥2008.所以函数的定义域是(-∞,0)∪[2008, ∞).①其次,由于函数y=n~(1/2)在[0, ∞)上是增函数,所以求函数y=(x~2-2008x)~(1/2)的单调递增  相似文献   

2.
二次复合函数单调性是高考的热点之一,但求解中对复合函数单调性的判定方法:“由里到外,同增异减”的理解和应用误区颇多,本文举一例说明求二次复合函数单调区间的错因及正确解法.题目函数 f(x)=(x-1)~2 2,g(x)=x~2-1,求函数 y=f[g(x)]的单调区间.错解1 因为函数 f(x)=(x-1)~2 2在(1, ∞)上单调递增,在(-∞,1)上单调递减;函数 g(x)=x~2-1在(-∞,0)上单调递减,在  相似文献   

3.
任何一个一元三次函数f(x)=a_3x~3 a_2x~2 a_1x a_0经过平移交换后一定可以转化为f(x)=ax~3 bx c的形式.本文先用初等数学的方法给出这种类型函数的单调区间,然后举竞赛题作为例子说明其应用. 定理函数 y=ax~3 bx c(a≠0)的单调性如下: 1.若a>0,b>0,则在(-∞, ∞)上单调递增. 2.若a<0,b<0,则在(-∞, ∞)  相似文献   

4.
本文利用函数y=x~n p/x(n∈N_ ,x>0,p>0),y=x p/x~n(n∈N_ ,x>0,p>o)的单调性求最值. 定理1 关于x的函数y=x~n p/x(n∈N_ ,x>0,p>0)在(0,(p/n)~(1/(n 1))]上是减函数,在[(p/n)~(1/(n 1)), ∞)上为增函数. 证 1°设0相似文献   

5.
对于求函数y=x a/x b(a>0,a、b均为常数)的最值,当x>0时,可利用均值不等式求其最值,当条件不具备时,可利用函数y= x a/x b的单调性求最值.我们利用函数单调性定义或导数知识可知该函数在(-∞,-a~(1/2)]与[a~(1/2), ∞)上为增函数,在[-a~(1/2),0)与(0,a~(1/2)]上为减函数,该数学模型渗透在多种求函数的最值问题之中,在高考题中较为多见,下面  相似文献   

6.
问题已知f(x)的值域是(-5,-12],求y=1f(x)的值域.探究因为y=f(1x)在(-∞,0),(0, ∞)上都是单调递减函数,由题意知-5f(1x)≥-2,所以y=f(1x)的值域为[-2,-51).反思升华1若改变f(x)的值域为[12,5),求y=f(1x)的值域.探究因为y=f(1x)在(0, ∞)上是单调递减函数,由21≤f(x)<5,可得2≥f(1x)>51,所以y=1f(x)的值域为(51,2].反思升华2又若改变f(x)的值域为(-5,12],求y=f(1x)的值域.探究1因为f(x)∈(-5,21]不是y=f(1x)的单调区间,所以必须把f(x)的范围分成(-5,0),{0},(0,21].当f(x)=0时,y=f(1x)无意义(舍去);当f(x)∈(-5,0)时,f(…  相似文献   

7.
导数是研究函数(单调性、极值、值域与最值)的有力工具,但如果对导数概念理解不到位,就容易造成会而不对、对而不全.一、求单调区间例1求函数y=x3(x∈R)的单调区间.错解:令y’=3x2>0,得x≠0;令y’=3x2<0,得x不存在.故y=x3的递增区间为(-∞,0)和(0,+∞).  相似文献   

8.
求函数y=(ax~2 bx c)/(a_1x~2 b_1x c_1)的值域一般用判别式法。但是当该函数定义在某个区间例如闭区间[m,n]上的时候,用判别式法求其值域就较困难。本文用新方法解决了这个问题。在解题过程中要用到两个初等函数的一些性质,我们称之为命题一、命题二。 [命题一] 函数f(x)=x a/x(a>0)的值域是(-∞,-2(a~(1/2))]∪[2(a~(1/2)), ∞)。且有 (1) 在(-∞,-a~(1/2)]上,f(x)从-∞↗-2(a~(1/2))。 (2) 在[-a~(1/2),0)上,f(x)从-2(a~(1/2))↘-∞。 (3) 在(0,a~(1/2)]上,f(x)从 ∞↘2(a~(1/2))。 (4) 在[a~(1/2), ∞)上,f(x)从2(a~(1/2))↗ ∞。其中,“f(x)从2(a~(1/2))↗ ∞”表示f(x)能取不小  相似文献   

9.
一、选择题(每小题6分,共6 0分)1.已知y =f(x)是定义在R上的偶函数,当x>0时,f(x) =log2 (1 x) .那么,当x <0时,f(x) =(  ) .(A)log2 (1 x)    (B)log2 (1-x)(C)log2 (- 1 x) (D)log2 (- 1-x)2 .若p、q为实数,则函数f(x) =x3 px2 qx r(  ) .(A)在(-∞, ∞)上是减函数(B)在(-∞, ∞)上是增函数(C)当p2 <3q时,在(-∞, ∞)上是增函数(D)当p2 >3q时,在(-∞, ∞)上是增函数3.已知α、β均为锐角,cos(α β) =- 45 .若设sinβ=x ,cosα=y ,则y与x的函数关系式为(  ) .(A)y =- 45 1-x2 35 x (0 相似文献   

10.
一、选择题(每小题5分,共60分)1·函数y=x-31x3的递增区间是().A(-∞,-1];B[-1,1];C[1, ∞);D(-∞, ∞)2·函数y=13 xx2,则().A有极小值-3,且有极大值3;B有极小值-23,且有极大值23;C仅有极大值3;D无极值3·若3 2i是关于x的方程x2 px q=0(p,q∈R)的一个根,则q的值是().A26;B5;C1  相似文献   

11.
函数的单调性可以从八个方面理解 ,且每一种理解都有其应用价值 ,分述如下 :设函数 y=f(x)的定义域为 1 ,D为I内的某个区间 .1 宏观理解在区间D上 f(x)的图象上升 (下降 ) f(x)是区间D上的增函数 (减函数 ) .例 1 已知a0 ,那么|f(x) |在区间 [a ,b]上 (   )A 单调递减 ,且 f(x) >0B .单调递增 ,且 f(x) >0C .单调递减 ,且 f(x) <0D .单调递增 ,且 f(x) <0解 取a =- 3,b=- 2 ,利用数形结合画出示意图 ,观察图象知|f(x) |在区间 [-3,- 2 ]上单调递增且…  相似文献   

12.
一、选择题1.下列各组函数中,表示同一函数的是A.y=1,y=xx B.y=!x-1×!x 1,y=!x2-1C.y=x,y=!3x3D.y=|x|,y=(!x)22.设f(x)=x 1,x>0,π,x=0,0,x<0,"$#$%则f{f[f(-1)]}=A.π 1B.0C.πD.-13.如果偶函数f(x)在[a,b]上具有最大值,那么该函数在[-b,-a]上A.有最大值B.有最小值C.没有最大值D.没有最小值4.已知函数f(x)满足f(ab)=f(a) f(b),且f(2)=p,f(3)=q,则f(72)=A.p q B.3p 2q C.2p 3q D.p3 q25.已知函数f(x)在区间[-2,3]上是增函数,则函数y=f(x 5)的递增区间是A.[3,8]B.[-7,-2]C.[0,5]D.[-2,3]6.已知二次函数f(x)=x2 x a(a>0),若f(m)…  相似文献   

13.
二次函数f(x)=ax~2 bx C(a、b、C∈R,a≠0)有两个重要性质: (1)f(x)的图象有唯一的对称轴x=-(b/2a),且在对称轴左、右两侧对应的区间(-∞,-(b/2a)]与[-(b/2a) ∞)上,f(x)具有相反的单调性;  相似文献   

14.
设函数f(x)定义在区间I上且x1,x2∈I,则①若函数f(x)在区间I上是单调增(或减)函数,则x1f(x2)).②若函数f(x)在区间I上是单调函数,则x1=x2f(x1)=f(x2).③若函数f(x)在区间I上是单调函数,则方程f(x)=0在区间I上至多有一个实数根.④若函数f(x)与g(x)的单调性相同,则在它们公共的定义域内,函数f(x) g(x)亦与它们的单调性相同.⑤复合函数y=f(u)(u=g(x))的单调性适合“同增异减”规律,即若f(x)与g(x)的单调性相同(或相异),则y=f[g(x)]为增(或减)函数.⑥互为反函数的两个函数在各自的定义域内具有相同的单调性.运用…  相似文献   

15.
一、求函数解析式【例1】设y=f(x)为三次函数,且图象关于原点对称,当x=1时,f(x)取得极小值-2,求f(x)的解析式.解:设f(x)=ax3 bx2 cx d(a≠0),由于其关于原点对称,为奇函数.故b=d=0.所以f(x)=ax3 cx,由f′(x)=3ax2 c,且x=1时,f(x)有极小值-2得f′(1)=3a c=0,f(1)=a c=-2,解之,得a=1,c=-3,所以f(x)=x3-3x.二、求函数单调区间与判断函数单调性【例2】求f(x)=x3 3x的单调区间.分析:首先确定f(x)的定义域,再在定义域上根据导函数f′(x)的符号来确定f(x)的单调区间.解:f(x)的定义域为(-∞,0)∪(0, ∞)f′(x)=3x2-3x2=3(x2 1)(x 1)(x-1)x2由于当x<-…  相似文献   

16.
一、忽视定义域致错例1求函数y=x-(1-2x)~(1/2)的值域.错解由y=x-(1-2x)~(1/2)得X~2 (1-y)x y~2-1=0.因为关于x的二次方程恒有实根,所以有△=[2(1-y)]-4 (y~2-1)≥0,解得y≤1.故函数的值域为(-∞,1).剖析△=[2(1-y)]~2-4(y~2-1)≥0只能保证方程x~2 2(1-y)x y~2-1=0在整个R上有实根,而不能保证在(-∞,1/2](函数的定义域)上也有实根.  相似文献   

17.
一、求简单复合函数单调区间定理:设函数u=g(x)的值域为N.1.若函数y=f(u)在N上为增函数,则u=g(x)的单调增(减)区间就是函数y=f[g(x)]的单调增(减)区间.2.若函数y=f(u)在N上为减函数,则u=g(x)的单调增(减)区间就是y=f[g(x)]的单调减(增)区间.本文根据上述定理归纳出一个比较容易的求复合函数单调区间的一般方法,其步骤是:(1)在y=f[g(z)](复合函数)中,换元即令u=g(x)(中间函数),则y=f(u)(原函数);(2)求出y=f(u)的单调区间N_i(i=1,2,…,n)并判定出增减;(3)求出使u=g(x)∈N_i的x范围M:(4)求  相似文献   

18.
在求解有关函数问题时,须仔细考虑函数的定义域,否则会导致解题不完整甚至错误.本文举出几道例题,并加以分析,指出哪些时候须要考虑函数的定义域.一、求函数的值域时例1求函数y=x+2x-x+21的值域.错解将y=x+2x-x+21化为y=1+x-21.∵x-21≠0,∴y≠1,即所求值域为y∈(-∞,1)∪(1,+∞).正解求得定义域为x∈{x|x≠-2,-1,1},将y=x+2x-x+21化为y=1+x-21,∵x-21≠0,∴y≠1,而当x=-1时,y=1+x-21=0;当x=-2时,y=1+x-21=13.∴y≠0,y≠13.故所求值域为y∈(-∞,0)∪0,31$%∪31,$%1∪(1,+∞).二、求函数的单调区间时例2求函数y=log12(x2-3x+2)的单调递增…  相似文献   

19.
本文给出一个关于函数y=x (a~2/x)(x>0,a>0)的单调性定理,然后给出它的应用。 定理 函数y=x a~2/x(a是正常数),在(0,a]上单调减少,在[a, ∞)上单调增加。 定理的证明比较简单,但定理的应用非常广泛,用它可以解决一些用不等式a b≥2((1/2)ab)不能解决的问题。 例1 已知a、b∈R~ ,且a b=S(定值),求函数y=(a 1/a)(b 1/b)的最小值。  相似文献   

20.
正1."单调性概念理解"的严谨性缺失书本定义:设定义在某区间上的函数y=f(x),如果f'(x)0,那么函数y=f(x)在这个区间内单调递增;如果f'(x)0,那么函数y=f(x)在这个区间内单调递减.理解这正是我们同学用来解决求函数单调区间的依据,但同学们往往忽略了这只是函数在这个区间上单调递增或递减的一个充分条件,而并非必要条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号