首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 363 毫秒
1.
在解析几何中,涉及到求过两圆交点的圆方程,求过一直线和一圆的交点的圆方程时,设圆系方程来解是一个非常快捷的一个方法,但没有给出圆系方程一定表示一个圆的证明,本文拟补出这个证明.(I)如果直线1:Ax By C=0与圆C:x~2 y~2 Dx Ey F=0相交,那么过两交点的圆可表示为x~2 y~2 Dx Ey F十λ(Ax By C)=0 (1)(λ∈R)(1)圆过交点的证明略去(2)下面证明方程(1)一定是一个圆方程.证明:(1)经过整理可改写为x~2 y~2 (D λA)x (E λB)y F λC=0,证明方程(1)表示  相似文献   

2.
该文引入了新的预条件矩阵P(α,β)=I+αS+Rβ,得到了当矩阵A为非奇异对角占优z-矩阵时,A(α,β)=M(α,β)-N(α,β)为Gauss-Seidel正则分裂,并在此基础上得出了一个重要的收敛定理,最后用数值试验对所得定理结论的有效性进行了验证。  相似文献   

3.
我们知道,求一个方阵的n次方口,通常可以利用矩阵的相似关系,即谱分解定理来解决。此方法需要相当的计算量。本文将对二阶方阵n次方口的计算问题进行讨论,导出一般公式,简便运算。我们记数域P上所有二阶方阵构成的线性空间为P2×2,O是零元,正是单元。设A∈P2×2。定理1。如果A有两个互异的特征值λ1,λ2(λ1≠λ2)那么证明:n=2,A2=A·A根据归纳原理,命题成立。定理2若A有特征值八(二重很),那么,A”一"Art-‘B+A”E。证明:n=2,A2=A.A根据归纳原理,命题成立。以下用定理的方法求二阶方阵的几次方口。即A…  相似文献   

4.
本文利用Krasnosel′skiis不动点定理讨论了下面的三阶两点奇异边值问题u(t) λa(t)f(t,u(t))=0,00为参数。  相似文献   

5.
定理对x∈(x1,x2)存在一个正数λ,使x=x1 λx21 λ.证明:充分性(存在一个正数λ,使x=x11 λλx2x∈(x1,x2))的证明,由x10并借助根域法(-2x2-x 4=0的两根为-1±433,x2 3x-1=0的两根为-3±213)可解得x∈-3…  相似文献   

6.
在直角坐标平面内点P(X_0,y_0),直线l:Ax By C=0,过 P 作 l 的垂线 PQ,设垂足为 Q(x',y'),显然直线 PQ 的方程为:B(x-x_0)-A(y-y_0)=0,令x'-x_0=λA,则 y-y_0=λB,又Q∈l,则有:A(x_0 λA) B(y_0 λB) c=0.解得:λ=-Ax_0 By_0 C/A~2 B~2,显然λ是由点 P 和直线 l 确定的常量.我们把它记作λ(P,l),有时简记为λ.显然,过 P 作 l 的垂线之垂足 Q(x_0 XA,y_0 λB);P 关于 l 的对称点 P'(z_0 2λA,y_0 2λB).  相似文献   

7.
众所周知 ,平面向量基本定理可从两个层面上理解 :( 1 )从代数式的角度 ,向量a和两个向量e1,e2 共面的充要条件是a =λ1e1 λ2 e2 ,λ1,λ2 ∈R ;( 2 )从平面几何角度 ,任一向量可在平面内进行任意的分解、组合 .但是 ,笔者认为 ,在完成了向量坐标形式及运算的教学后 ,应该进行如下反思 :1 探究平面向量基本定理的解析本质当然 ,如果我们仅就向量的坐标形式而言 ,该定理仍在上述思考的范畴 .试想 ,任一向量都可视为有向线段 ,那么我们不妨设有向线段P0 P所在的直线为l,方向向量a ,根据平面基本定理a=λ1e1 λ2 e2 ,λ1,λ2 ∈R .设e1=( -…  相似文献   

8.
文 [1]给出了条件 x+ y=1下 1xn+ λyn的最小值定理 ,并利用 (a2 + b2 ) (c2 + d2 )≥ (ac+ bd) 2 (a,b,c,d∈ (0 ,+∞ )和待定系数法证明之 .定理 已知 x,y,λ∈ (0 ,+∞ )且 x+ y=1,则当且仅当 y∶ x=λ1n+ 1 时 ,1xn+ λyn(n∈N* )取最小值 ,最小值为 (1+ λ1n+ 1 ) n+ 1 .本文给出定理的一个简单证明 .证明 ∵x,y,λ∈ (0 ,+∞ ) ,n∈ N* ,且x+ y=1,∴ 1xn+ λyn=(1xn+ λyn) (x+ y) n =(1xn+λyn) (C0nxn+ C1 nxn-1 y+ C2nxn-2 y2 +… + Crnxn-ryr+… + Cnnyn)=1+ C1 nyx + C2ny2x2 +… + Crnyrxr +… + Cnnynxn+ λC0nxnyn + …  相似文献   

9.
本文证明了复奇异方阵T是两个幂零矩阵A和B的乘积,且秩(A)=秩(B)=秩(T),除T是一个秩为1的2×2阶幂零矩阵以外。 如果一个复矩阵T满足T~n=0,则称T是幂零的。易见,有限多个幂零矩阵的乘积一定是奇异的。本文的目的是证明这一断言的逆。  相似文献   

10.
设p为正整数,A(p)表示单位圆盘内形如,f(z)=Zp 8∑k=p 1akzk的解析函数全体,对给定的复常数λ≠-p及f(z)∈A(p),用Jλf(z)=hλ*f(z)定义算子Jλ,其中hλ(z)=8∑k=pp λ/k λzk,得出当Jλf(z)∈R(p)(a)(0≤α<p)时,必存在r0,使得在|z|<r0内,f(z)∈Rn(p)(β),其中0≤β<P.  相似文献   

11.
由空间向量基本定理的推论知[见高中数学教材(人教版)第二册(下)P31页]:若O、A、B、C是不共面的四点,则对空间任一点P,都存在唯一的有序实数组λ1、λ2、λ3,使→OP=λ1 →OA λ2 →OB λ3 →OC.  相似文献   

12.
设点P1(x1,y1)、P2(x2,y2)和P(x,y),若P1P=λPP2(λ≠-1)则有x=x1 λx21 λ,y=y1 λy21 λ.显然点P在P1、P2的连线上,且当λ>0时,P在P1、P2之间;当λ<0时,P在线段P1P2外;当λ=0时,P与P1重合.上述结果就是定比分点公式之内容.众所周知,定比分点公式是解析几何中最基本的公式之一,其关键是λ的确定.由此出发,我们若能恰当地设置λ,不仅能使问题化难为易,而且能体味其解法的简洁美.下面举例说明定比分点公式的若干应用.1 求解函数的值域例1 求函数y=1 3x 11-x 1的值域.解 令λ=-x 1,则λ≤0,依题意有y=1 (-3)λ1 λ,这样λ就是点P(y…  相似文献   

13.
利用关于锥拉伸锥压缩的Krasnoselskii不动点定理讨论了非线性奇异三阶两点边值问题u(t) λa(t)f(u(t))=0,0相似文献   

14.
设A(x1,y1) ,B(x2 ,y2 ) ,点P(x ,y)分有向线段AB所成的比APPB=λ(λ≠ - 1 ) ,则有 :x =x1+λx21 +λ ,y =y1+λy21 +λ .且当P为内分点时 ,λ >0 ;当P为外分点时 ,λ <0 (λ≠- 1 ) .当P与A重合时 ,λ =0 ;当P与B重合时 ,λ不存在 ,这就是定比分点坐标公式 .应用定比分点坐标公式 ,能使许多问题化难为易 ,化繁为简 ,有着非凡的功效 .1 比较大小例 1 已知a >0 ,b >0 ,0 0 ,则 1 -x =1 - λ1 +λ=11 +λ.于是 a2x+ b21 -…  相似文献   

15.
关于矩阵乘积的秩,我们有定理1设A是数域P上nxm矩阵,B是数域P上mxs矩阵,于是秩(AB)≤min[秩(A),秩(B)],即乘积的秩不超过各因子的秩.此定理的证明方法有多种,可见[1][2][3].本文结合线性方程组给出一种简捷的证法.引理 如果线性方程组AX=θ的解都是BX=θ的解,则秩(A)≥秩(B).证明 不妨设AX=θ的基础解系含有n一秩(A)个线性无关解,BX=θ的基础解系含有n一秩(B)个线性无关解.  相似文献   

16.
结论1 设OA、OB不共线,点P在过A、B两点的直线上的充要条件是OP=αOA βOB,其中α,β∈R,且α β=1. 在结论1中,若α=(1)/(1 λ),β=(λ)/(1 λ)(λ∈R,且λ≠-1),则有:  相似文献   

17.
高中数学新教材的向量内容中有一个很重要的定理 ,其应用面也比较大 ,对向量知识的进一步理解和掌握也具有积极的意义 .一、定理的叙述与证明定理 :如果不共线向量 a,b,c有公共起点 ,满足 c=λa +μb.那么三个向量的终点在同一直线上的充要条件是λ +μ =1(这里λ,μ∈ R) .证明 :如图 ,设向量 a =OA,b = OB,c =OC.必要性 :如果点 C在直线BC上 ,设 BC =λCA (λ∈ R) ,则BC = λ1+λBA所以 c=b+BC= b +λ1+λBA =b+λ1+λ( a- b) =11+λa +λ1+λb,因此 11+λ+λ1+λ=1.充分性 :如果λ+μ =1,则λ=1-μ,所以 c=( 1-μ) a +μb =a …  相似文献   

18.
性质已知△ABC 及点 P,若λ_1 λ_2 λ_3=λ_1,λ_2,λ_3都是非零实数,则△PBC,△PCA,△PAB 的面积之比为|λ_1|:|λ_2|:|λ_3|.1 性质证明证明如图1,作向量=λ_1=λ_2,=λ_3,则点 P 为△A′B′C′的重心。所以S_(△PBC)=1/(|λ_2|·|λ_3|)·S_(△PB′C′)  相似文献   

19.
本文证明由幂幺矩阵的全体实系数多项式组成的空间的维数,等于这个幂幺矩阵的不同特征根的个数。设A=(aij)是n阶矩阵,aij是复数,满足Ak=E(k≥1)的矩阵称为幂幺矩阵;由这样的矩阵A的全体实系数多项式组成一个向量空间,把这个向量空间记为P(A)。引理1:n阶矩阵A相似于一个对角矩阵的充要条件是A的最小多项式没有重根。证明:充分性设A的最小多项式m(λ)没有重根,m(λ)=(λ-λ1)(λ-λ2)…(λ-λk),则m(A)=(A-λ1E)(A-λ2E)…(A-λkE)=0,记矩阵A-λiE的秩为γi(i=1,2,…,k),则由上…  相似文献   

20.
利用关于锥拉伸锥压缩的Krasnoselskii不动点定理,讨论了非线性奇异三阶两点边值问题{u^m(t)+λa(t)f(u(t))=0,0〈t〈1 u(1)=u′(1)=u″(0)=0正解的存在性,得到上述边值问题至少存在两个正解的λ的区间,其中λ是一个正常数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号