首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
正引言文[1]—[4]研究了如下几个有意思的不等式:问题1已知a,b,c为正实数,求证:(a2+b2)2≥(a+b+c)(a+b-c)(b+c-a)(c+a-b).问题2已知a,b,c为正实数,求证:(ab)2≥1/4(a+b+c)(a+b-c)(b+c-a))c+a-b).问题3若a,b,c为正实数,且满足a+b+c=3,求证:(3/a-2)(3/b-2)(3/c-2)≤1.  相似文献   

2.
不等式a b≥2(ab)~(1/2)是中学数学中一个用得很广的基本不等式,但在应用中常见一些错误,现举几例. 一、忽视了a b≥2(ab)~(1/2)成立条件而导致的错误例1 设a、b、c为正数,求证(a b c)~3≥27(a b-c)(b c-a)(c a-b) 错误证法: ∵a b c=(a b-c) (b c-a) (c a-b)>0 ∴(a b-c) (b c-a) (c a-b)≥3((a b-c)(b c-a)(c a-b))~(1/2) 即(a b c)~3≥27(a b-c)(b c-a)(c a-b) 分析:虽a>0,b>0,c>0,但a b-c,b c-a,c a-b不一定都大于0,而x y z≥3(xyz)~(1/2)的中x、y、z必须都大于0.  相似文献   

3.
我们知道,对于任意两个正实数a、b恒有不等式:a~(a-b)≥b~(a-b)(※)成立。本文利用这一不等式给出几个难度较大的不等式的简洁证明。例1 已知a、b、c∈R~+,求证: a~(2a)b~(2b)c~(2c)≥a~(b+c)·b~(a+c)·c~(a+b)(1978年上海市中学数学竞赛试题) 证明由(※)得 a~(a-b)≥b~(a-b),b~(b-a)≥c~(b-c),c~(c-a)≥a~(c-a)。以上不等式两边分别相乘得 a~(a-b)·b~(b-c)·c~(c-a)≥b~(a-b)·c~(b-c)·a~(c-a)。整理得:a~(2a)·b~(2b)·c~(2c)≥a~(b+c)·b~(a+c)·c~(a+b) 例2 设a、b、c∈R~+.求证: a~ab~bc~c≥(abc)(a+b+c)/3(1974年美国第三届奥林匹克竞赛试题)。证明由例1知  相似文献   

4.
高中代数必修本下册 P33第9题是已知 a>b>c,求证:1/a-b+1/b-c+1/c-a>0证明:1/a-b+1/b-c+1/c-a=-a~2-b~2-c~2+ab+bc+ca/(a-b)(b-c)(c-a)=-[(a-b)~2+(b-c)~2+(c-a)~2]/2(a-b)(b-c)(c-a)  相似文献   

5.
本刊1993年7—8期“贵多思,勤总结”一文,对题目:“已知(c-a)~2-4(a-b)(b-c)=0,求证:2b=a+c”给出了五种解法.作为前文的补充,这里再给出两种解法. 解法1 已知等式可化为(a-b)(b-c)=((c-a)~2)/4.①因为(a-b)+(b-c)=a-c,设a-b=(a-c)/2+t,则  相似文献   

6.
一、变形类例1已知14(b-c)2=(a-b)(c-a)且a≠0,则b a c=.解:由已知变形,得(b-c)2=4(a-b)(c-a).∴[(a-b) (c-a)]2=4(a-b)(c-a).∴(a-b)2 2(a-b)(c-a) (c-a)2=4(a-b)(c-a),即[(a-b)-(c-a)]2=0.∴a-b=c-a,即b c=2a.又a≠0,故b ca=2.说明:若直接去括号,然后整理、变形、计算,这样不  相似文献   

7.
文[2]受文[1]启发,给出"背景不等式":abc≥(a b-c)(b c-a)(c a-b)的若干运用,实际上abc≥(a b-c)(b c-a)(c a-b)是Schur不等式的特例.  相似文献   

8.
用恒等式解题,大体上有两个途径:一是应用已知的基本恒等式求解;二是根据问题的特点推证出一个适用的恒等式,这通常需要相当高的运算技巧和能力.例1设a、b、c都是正数,满足条件(a2 b2 c2)2>2(a4 b4 c4).求证:a、b、c一定是某个三角形的三边长.证明先把条件改成2a2b2 2b2c2 2c2a2-a4-b4-c4>0.应用恒等式(这是一个较常见的因式分解)2(a2b2 b2c2 c2a2)-a4-b4-c4=(a b c)(a b-c)(b c-a)(c a-b),得(a b c)(a b-c)(b c-a)(c a-b)>0,即(a b-c)(b c-a)(c a-b)>0.若上式左边有两个因式为负(另一个因式为正),例如,若a b-c<0,b c-a<0,两式相加得b<0,这…  相似文献   

9.
第十三届(1953牛)普特南数学竞赛有这样一道试题: 设实数a,b,c中任意两个之和大于第三个,求证 2/3(a+b+c)(a~2+b~2+c~2) >a~3+b~3+c~3+abc. (1) 事实上,我们有命题设实数a,b,c中任意两个之和大于第二个,则 2/3(a+b+c)(a~2+b~2+c~2) ≥a~3+b~3+c~3+3abc. (2)当且仅当a=b=c时等号成立. 证明:不难验证,(2)式等价于 (b+c-a)(c+a-b)(a+b-c)  相似文献   

10.
在文[1]中,陆爱梅老师提出一组四个猜想不等式: 猜想1 已知a,b,c是满足abc=1的正数,证明:a2/a3+2+b2/b3+2+c2/c3+2≤1/3(a+b+c); 猜想2 已知a,b,c是满足a+b+c=1的正数,证明:a2/b+c2+b2/c+a2+c2/a+b2>3/4; 猜想3 已知a,b,c是满足a+b+c=3的非负实数,证明:a+b/a+1+b+c/b+1+c+a/c+1≥3; 猜想4 已知a,b,c是两两不同的实数,证明:(a-b/a-c)2+(b-c/b-a)2+(c-a/c-b)2≥a2+c2/a2+b2+b2+a2/b2+c2+c2+b2/c2+a2.  相似文献   

11.
有关证明条件等式的代数题,是一类综合性比较强的题目,如果能让学生掌握其各种不同的证明方法,对于培养他们的逻辑思维能力和熟练的技能技巧都是大有益处的。下面介绍几种证明条件等式的常用方法。一、将已知条件直接代入欲证等式例1 已知:x=(a-b)/(a b),y=(b-c)/(b c), z=(c-a)/(c a) 求证:(1 x)(1 y)(1 z) =(1-x)(1-y)(1-z) 证明:∵(1 x)(1 y)(1 z) =(1 (a-b)/(a b))(1 (b-c)/(b c))(1 (c-a)/(c a)) =2a/(a b)·2b/(b c)·2c/(c a) (1-x)(1-y)(1-z) =(1-(a-b)/(a b))(1-(b-c)/(b c))(1-(c-a)/(c a)) =2b/(a b)·2c/(b c)·2a/(c a) ∴ (1 x)(1 y)(1 z)=(1-x)(1-y)(1-z) 二、通过已知条件之间的相互变换,得出求证式。例2.设x=by cz,y=cz ax,z=ax by 试证:(a 1)x=(b 1)y=(c 1)z  相似文献   

12.
另证一个不等式的再推广   总被引:1,自引:0,他引:1  
文[1]对人教版教材高中数学第二册(上)第30页的一道习题:已知a、b、c〉0,求证:1/a-b+1/b-c+1/c-a〉0,指导学生进行了探究,将这个不等式加强为1/a-b+1/b-c+4/c-a≥0,  相似文献   

13.
由完全平方公式,得(a-b)2=a2-2ab+b2,(b-c)2=b2-2bc+c2,(c-a)2=c2-2ca+a2,∴(a-b)2+(b-c)2+(c-a)2=2(a2+b2+c2+ab-bc-ca),∴a2+b2+c2-ab-bc-ca=12[(a-b)2+(b-c)2+(c-a)2].这是一个非常重要的等式,巧用它,某些代数题的解答可变得简易、迅捷.例1如果a=1999x+2001,b=1999x+2002,c=1999x+2003,那么a2+b2+c2-ab-bc-ca的值是().(A)1;(B)2;(C)3;(D)4.解:已知三等式两两相减,得a-b=-1,b-c=-1,c-a=2.原式=12[(a-b)2+(b-c)2+(c-a)2]=3.例2若a、b、c是不全相等的任意有理数,且x=a2-bc,y=b2-ca,z=c2-ab,则x、y、z().(A)都小于0;(B)都大于0;(C)至少有…  相似文献   

14.
文[1]给出问题“设a,b,c是ΔABC的三边,求证:a2/b+c-a+b2/c+a-b+c2/a+b-c≥a+b+c.”的两种证法.  相似文献   

15.
由 (a-6)2+(b-c)2+(c-a)2 =2(a2+b2+c2-ab-bc-ca),易知 a2+b2+c2-ab-bc-ca =1/2[(a-b)2+(b-c)2+(c-a)2], 这个恒等式,看来普通,殊不知如果你会灵活地用它,不少问题可以得到新颖而又简捷的解法. 例1 已知a-b=5+6,b-c=5-6,求  相似文献   

16.
《中学数学教学》2020年第1期上,“有奖解题擂台(127)”刊有以下问题在锐角△ABC中,求证:1cosA+1cosB+1cosC≥1sinA2sinB2sinC2-2.证法1(扬学枝提供)设△ABC边长为BC=a,CA=b,AB=c,由对称性,不妨设a≥b≥c,则原式等价于∑2bc-a2+b2+c2≥8abc∏(-a+b+c)-2∑(2bc-a2+b2+c2+1)≥8abc∏(-a+b+c)+1∑(a+b+c)(-a+b+c)-a2+b2+c2≥-∑a3+∑a(b+c)2∏(-a+b+c)∑(a+b+c)(-a+b+c)-a2+b2+c2≥∑a(a+b+c)(-a+b+c)∏(-a+b+c)∑-a+b+c-a2+b2+c2≥∑a(a-b+c)(a+b-c),由于∑a(a-b+c)(a+b-c)=12∑(1a-b+c+1a+b-c)=∑1-a+b+c.  相似文献   

17.
文[1]中作者给出并证明了Nesbitt不等式的加强式,同时介绍了其运用,本文给出Nesbitt不等式加强式的一个等价形式,在此基础上建立几个新颖的不等式.Nesbitt不等式设a、b、c是正实数,则有a b+c+b c+a+c a+b≥32(1).文[1]将(1)式加强为:设a、b、c是正实数,则有a b+c+b c+a+c a+b≥32+a-b 2+b-c 2+c-a 2 a+b+c 2(2).这里给出(2)的等价变形形式,在此基础上建立几个有趣的不等式.  相似文献   

18.
一些代数问题,直接求解运算量大,难以奏效.但如果恰当进行三角代换,配之以众多三角公式,常能化难为易,顺利求解.下面按题型分别举例说明.一、证明不等式例1(2000年希望杯试题)已知a>b>c,求证:1a-b+1b-c+4c-a≥0.证明:∵a>b>c,∴a-b,b-c,a-c均为正数,又因a-b+b-c=a-c,故可设a-b=(a-c).cos2α,b-c=(a-c).sin2α,(0<α<π2)代入原不等式,即有sec2α+csc2α-4≥2+tan2α+cot2α≥4显然成立.故原不等式成立.例2设a,b∈R+,求证:a3b+b3a≥12(a+b)2.证明:设a+b=m,则可令a=m.cos2α,b=m.sin2α,α∈(0,π2)则原不等式等价于cos6αsin2α+sin6αcos2…  相似文献   

19.
已知a/1+9bc+k(b-c)2+b/1+9ca+k(c-a)2+c/1+9ab+k(a-b)2 ≥1/2①,对满足a+b+c=1的所有非负实数a,b,c都成立,求实数k的最大值. 这是2014年日本数学奥林匹克高中决赛第5题,在式①中,令a=b=1/2,c=0,可得k≤4.关于该题的解答,可参考文[1],此处笔者拟给出式①的一个推广.  相似文献   

20.
题目1/4(b-c)^2=(a-b)(c-a)(a≠0),求b c/a,(1999年全国数学竞赛试题)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号