首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Player-to-player contact inherent in many unhelmeted sports means that head impacts are a frequent occurrence. Model-Based Image-Matching (MBIM) provides a technique for the assessment of three-dimensional linear and rotational motion patterns from multiple camera views of a head impact event, but the accuracy is unknown for this application. The goal of this study is to assess the accuracy of the MBIM method relative to reflective marker-based motion analysis data for estimating six degree of freedom head displacements and velocities in a staged pedestrian impact scenario at 40 km/h. Results showed RMS error was under 20 mm for all linear head displacements and 0.01–0.04 rad for head rotations. For velocities, the MBIM method yielded RMS errors between 0.42 and 1.29 m/s for head linear velocities and 3.53–5.38 rad/s for angular velocities. This method is thus beneficial as a tool to directly measure six degree of freedom head positional data from video of sporting head impacts, but velocity data is less reliable. MBIM data, combined in future with velocity/acceleration data from wearable sensors could be used to provide input conditions and evaluate the outputs of multibody and finite element head models for brain injury assessment of sporting head impacts.  相似文献   

2.
ABSTRACT

Physical movement demands in elite netball match-play have been limited to notational analysis or accelerometer-derived measures, due in part to the indoor environment in which they are played. Commercially available local positioning systems (LPS) using ultra-wideband communication have been designed to bring similar capabilities as global positioning systems (GPS) to indoor environments. This study aims to quantify both spatiotemporal and traditional accelerometer-derived measures, to assess the movement demands of all playing positions, during Australian national netball league matches. Total distance, metreage per minute, acceleration density, acceleration density index, acceleration load, jumps, velocity bands, acceleration bands and PlayerLoad variables have been presented for each position. Mean total distance-covered in match-play differed substantially between positions. Centre position accumulated the highest mean distance (5462.1 ± 169.4 m), whilst the Goal Shooter consistently covered the lowest mean distance (2134 ± 102.6 m). Change of direction relative to movement area was highest for the two most restricted positions based on average acceleration per 10 m covered during match-play (Goal Shooter; 7.21 ± 0.88 m · s ? 2 and Goal Keeper; 6.75 ± 0.37 m · s ? 2, remaining positions; 5.71 ± 0.14 m · s ? 2). The positional profiles outlined in this study can assist skill and conditioning coaches to prescribe training sessions that will optimise the athlete’s physical preparation for the demands of competition.  相似文献   

3.
Abstract

The velocity and acceleration at which the ball-carrier or tackler enters the tackle may contribute to winning the contest and prevailing injury free. Velocity and acceleration have been quantified in controlled settings, whereas in match-play it has been subjectively described. The purpose of this study was to determine the velocity and acceleration of the ball-carrier and tackler before contact during match-play in three competitions (Super 14, Varsity Cup, and Under-19 Currie Cup). Using a two-dimensional scaled version of the field, the velocity and acceleration of the ball-carrier and tackler were measured at every 0.1 s to contact for 0.5 s. For front-on tackles, a significant difference (P < 0.05) between the ball-carrier (4.6 ± 1 m · s–1) and tackler (7.1 ± 3.5 m · s–1) was found at the 0.5 s time to contact interval in the Varsity Cup. For side-on tackles, differences between the two opposing players were found at 0.5 s (ball-carrier: 4.6 ± 1.7 m · s–1; tackler: 3.1 ± 1.2 m · s–1) and 0.4 s (ball-carrier: 6.3 ± 2.3 m · s–1; tackler: 3.7 ± 1.6 m · s–1) at Under-19 level. After 0.4 s, no significant differences (P > 0.05) were evident. Also, the ball-carrier's velocity over the 0.5 s was relatively stable compared with that of the tackler. Results suggest that tacklers adjust their velocity to reach a suitable relative velocity before making contact with the ball-carrier.  相似文献   

4.
Velocity profiling using inertial sensors for freestyle swimming   总被引:1,自引:1,他引:0  
The ability to unobtrusively measure velocity in the aquatic environment is a fundamental challenge for engineers and sports scientists and important in assessing the skill level. The aim of this research was to develop a method for velocity profiling in freestyle swimming utilising a purpose-built inertial sensor. Seventeen swimmers with different experience levels participated in this study performing a total of 159 laps in the velocity range from 0.79 to 2.04 m s?1. Data were collected using a triaxial accelerometer and a tethered velocity meter. The collected acceleration data were filtered using a 0.5 Hz Hamming-windowed FIR filter to remove the gravitational acceleration before the lap velocity profiles were calculated. These calculated lap velocity profiles were then compared with the velocity profiles measured by the velocity meter using Bland–Altman analysis. The scattering follows a normal distribution with a mean skewness of 0.96 ± 0.47 and kurtosis of 2.93 ± 1.12. The results show that an inertial sensor alone can be used to determine a lap velocity profile from single point acceleration records.  相似文献   

5.
Although accelerometers can assess sleep and activity over 24 h, sleep data must be removed before physical activity and sedentary time can be examined appropriately. We compared the effect of 6 different sleep-scoring rules on physical activity and sedentary time. Activity and sleep were obtained by accelerometry (ActiGraph GT3X) over 7 days in 291 children (51.3% overweight or obese) aged 4–8.9 years. Three methods removed sleep using individualised time filters and two methods applied standard time filters to remove sleep each day (9 pm–6 am, 12 am–6 am). The final method did not remove sleep but simply defined non-wear as at least 60 min of consecutive zeros over the 24-h period. Different methods of removing sleep from 24-h data markedly affect estimates of sedentary time, yielding values ranging from 556 to 1145 min/day. Estimates of non-wear time (33–193 min), wear time (736–1337 min) and counts per minute (384–658) also showed considerable variation. By contrast, estimates of moderate-to-vigorous activity (MVPA) were similar, varying by less than 1 min/day. Different scoring methods to remove sleep from 24-h accelerometry data do not affect measures of MVPA, whereas estimates of counts per minute and sedentary time depend considerably on which technique is used.  相似文献   

6.
Abstract

We compared the match activity profiles of elite footballers from Australian football (AF), rugby league (RL) and soccer (SOC), using identical movement definitions. Ninety-four elite footballers from AF, RL or SOC clubs in Australia participated in this study. Movement data were collected using a 5-Hz global positioning system from matches during the 2008–2011 competitive seasons, including measures of velocity, distance, acceleration and bouts of repeat sprints (RS). Australian footballers covered the greatest relative running distances (129 ± 17 m.min?1) compared to RL (97 ± 16 m.min?1) and SOC (104 ± 10 m.min?1) (effect size [ES]; 1.0–2.8). The relative distance covered (4.92 ± 2.10 m.min?1 vs. 5.42 ± 2.49 m.min?1; 0.74 ± 0.78 m.min?1 vs. 0.97 ± 0.80 m.min?1) and the number of high-velocity running (0.4 ± 0.2 no.min?1 vs. 0.4 ± 0.2 no.min?1) and sprint (0.06 ± 0.06 no.min?1 vs. 0.08 ± 0.07 no.min?1) efforts between RL and SOC players were similar (ES; 0.1–0.3). Rugby league players undertook the highest relative number of accelerations (1.10 ± 0.56 no.min?1). RS bouts were uncommon for all codes. RL and SOC players perform less running than AF players, possibly due to limited open space as a consequence of field size and code specific rules. While training in football should be code specific, there may be some transference of conditioning drills across codes.  相似文献   

7.
The purpose of this study was to assess the validity of accelerometers using force plates (i.e., ground reaction force (GRF)) during the performance of different tasks of daily physical activity in children. Thirteen children (10.1 (range 5.4–15.7) years, 3 girls) wore two accelerometers (ActiGraph GT3X+ (ACT), GENEA (GEN)) at the hip that provide raw acceleration signals at 100 Hz. Participants completed different tasks (walking, jogging, running, landings from boxes of different height, rope skipping, dancing) on a force plate. GRF was collected for one step per trial (10 trials) for ambulatory movements and for all landings (10 trials), rope skips and dance procedures. Accelerometer outputs as peak loading (g) per activity were averaged. ANOVA, correlation analyses and Bland–Altman plots were computed to determine validity of accelerometers using GRF. There was a main effect of task with increasing acceleration values in tasks with increasing locomotion speed and landing height (P < 0.001). Data from ACT and GEN correlated with GRF (r = 0.90 and 0.89, respectively) and between each other (r = 0.98), but both accelerometers consistently overestimated GRF. The new generation of accelerometer models that allow raw signal detection are reasonably accurate to measure impact loading of bone in children, although they systematically overestimate GRF.  相似文献   

8.
Abstract

The aims of this study were to examine the acute effects of static stretching on peak torque, work, the joint angle at peak torque, acceleration time, isokinetic range of motion, mechanomyographic amplitude, and electromyographic amplitude of the rectus femoris during maximal concentric isokinetic leg extensions at 1.04 and 5.23 rad · s?1 in men and women. Ten women (mean ± s: age 23.0 ± 2.9 years, stature 1.61 ± 0.12 m, mass 63.3 ± 9.9 kg) and eight men (age 21.4 ± 3.0 years, stature 1.83 ± 0.11 m, mass 83.1 ± 15.2 kg) performed maximal voluntary concentric isokinetic leg extensions at 1.04 and 5.23 rad · s?1. Following the initial isokinetic tests, the dominant leg extensors were stretched using four static stretching exercises. After the stretching, the isokinetic tests were repeated. Peak torque, acceleration time, and electromyographic amplitude decreased (P≤ 0.05) from pre- to post-stretching at 1.04 and 5.23 rad · s?1; there were no changes (P > 0.05) in work, joint angle at peak torque, isokinetic range of motion, or mechanomyographic amplitude. These findings indicate no stretching-related changes in the area under the angle – torque curve (work), but a significant decrease in peak torque, which suggests that static stretching may cause a “flattening” of the angle – torque curve that reduces peak strength but allows for greater force production at other joint angles. These findings, in conjunction with the increased limb acceleration rates (decreased acceleration time) observed in the present study, provide tentative support for the hypothesis that static stretching alters the angle – torque relationship and/or sarcomere shortening velocity.  相似文献   

9.
10.
Reproducibility of frequency content from surface electromyography (sEMG) signals has not been assessed and it is unknown if incremental load testing design could affect sEMG in cycling. The goals of this study were to assess the reproducibility of measures from sEMG frequency content between sessions and to compare these frequency components between a ramp and a step incremental cycling test. Eighteen cyclists performed four incremental load cycling tests to exhaustion. Two tests were performed using a step increment (load started at 100 W for 3 min followed by increments of 30 W every 3 min) and two were performed using a ramp increment (load started at 100 W for 1 min followed by increments of 30 W·min?1). sEMG was monitored bilaterally for the rectus femoris and vastus lateralis throughout the tests and converted into overall activation (whole signal bandwidth), high- and low-frequency contents. The reproducibility of the frequency content ranged from none to strong (ICC = 0.07–0.90). Vastus lateralis activation was larger at the step compared to the ramp test (P < 0.01), without differences for rectus femoris (P = 0.22–0.91) and for the high-frequency (P = 0.28–0.95) and low-frequency contents (P = 0.13–0.94). sEMG from vastus lateralis and rectus femoris presented none to strong reproducibility. Vastus lateralis is more activated in step test design.  相似文献   

11.
In the sport of alpine skiing, knowledge about the centre of mass (CoM) kinematics (i.e. position, velocity and acceleration) is essential to better understand both performance and injury. This study proposes a global navigation satellite system (GNSS)-based method to measure CoM kinematics without restriction of capture volume and with reasonable set-up and processing requirements. It combines the GNSS antenna position, terrain data and the accelerations acting on the skier in order to approximate the CoM location, velocity and acceleration. The validity of the method was assessed against a reference system (video-based 3D kinematics) over 12 turn cycles on a giant slalom skiing course. The mean (± s) position, velocity and acceleration differences between the CoM obtained from the GNSS and the reference system were 9 ± 12 cm, 0.08 ± 0.19 m · s-1 and 0.22 ± 1.28 m · s-2, respectively. The velocity and acceleration differences obtained were smaller than typical differences between the measures of several skiers on the same course observed in the literature, while the position differences were slightly larger than its discriminative meaningful change. The proposed method can therefore be interpreted to be technically valid and adequate for a variety of biomechanical research questions in the field of alpine skiing with certain limitations regarding position.  相似文献   

12.
Little is known about the transmission of vibration to the head when using whole-body vibration (WBV) training machines. This paper investigates the effect of frequency and posture on the transmission of vibration from a vibrating plate to the head of standing people. Nine male participants were exposed to vertical vibration at nine frequencies in the range of 17–46 Hz and vibration acceleration in the range of 7.85–18.64 m/s2 (peak). The participants adopted four standing postures described as standing with locked knee (LK), bent knee (BK), one leg (OL), and one foot to the front and the other to the back (FB). The transmissibility to the head differed among postures (t-test, p < 0.05) and was greatest with the FB posture and smallest with the BK posture. The transmissibility to the head decreased with increasing the frequency (t-test, p < 0.05) but the extent of the decrease depended on the adopted posture. This frequency-posture interaction effect on the transmissibility should be considered when designing a training program. The data will be useful for developing standards/protocols that govern the use of WBV machines as well as for building human body models that can predict potential risks arising from using WBV machines.  相似文献   

13.
Isometric tests have been used to assess rate of force development (RFD), however variation in testing methodologies are known to affect performance outcomes. The aim of this study was to assess the RFD in the isometric squat (ISqT) using two test protocols and two testing angles. Eleven participants (age: 26.8 ± 4.5 years, strength training experience: 7.1 ± 3.03 years) completed test and retest sessions one week apart, whereby two test protocols with respect to duration and instructions were compared. Isometric peak force (ISqTpeak) and isometric explosive force (ISqTexp) tests were assessed at two joint angles (knee flexion angle 100° and 125°). Force-time traces were sampled and subsequently analysed for RFD measures. Average and instantaneous RFD variables did not meet reliability minimum criteria in ISqTpeak at 100° or 125°. The ISqTexp test at 100° met reliability criteria in the RFD 0–200 and 0–250ms variables. The ISqTexp test at 125° met reliability criteria in the RFD 0–150, 0–200 and 0–250ms variables. Force-time characteristics were optimized at the higher knee joint angle. Average and instantaneous RFD measures obtained using a traditional peak force test do not meet basic reliability criteria. Researchers assessing multi-joint RFD should employ the explosive RFD test protocol as opposed to the traditional isometric peak force protocol.  相似文献   

14.
Downhill backwards walking causes repeated, cyclical loading of the muscle–tendon unit. The effect this type of repeated loading has on the mechanical behaviour of the Achilles tendon is presently unknown. This study aimed to investigate the biomechanical response of the Achilles tendon aponeurosis complex following a downhill backwards walking protocol. Twenty active males (age: 22.3 ± 3.0 years; mass: 74.7 ± 5.6 kg; height: 1.8 ± 0.7 m) performed 60 min of downhill (8.5°), backwards walking on a treadmill at ?0.67 m · s?1. Data were collected before, immediately post, and 24-, 48- and 168-h post-downhill backwards walking. Achilles tendon aponeurosis elongation, strain and stiffness were measured using ultrasonography. Muscle force decreased immediately post-downhill backward walking (= 0.019). There were increases in Achilles tendon aponeurosis stiffness at 24-h post-downhill backward walking (307 ± 179.6 N · mm?1, = 0.004), and decreases in Achilles tendon aponeurosis strain during maximum voluntary contraction at 24 (3.8 ± 1.7%, = 0.008) and 48 h (3.9 ± 1.8%, = 0.002) post. Repeated cyclical loading of downhill backwards walking affects the behaviour of the muscle–tendon unit, most likely by altering muscle compliance, and these changes result in tendon stiffness increases.  相似文献   

15.
Tendon stress may be one of the important risk factors for running-related tendon injury. Several methods have been used to estimate Achilles tendon (AT) loading during a human performance such as inverse dynamics (ID) and inverse dynamics-based static optimisation (IDSO). Our purpose was to examine differences between ID and IDSO estimates of AT loading during running. Kinematic data were captured simultaneously with kinetic data. Imaging of the AT cross-sectional area was performed with ultrasound for 17 healthy runners (height: 170.2 ± 6.2 cm, mass: 63.9 ± 11.0 kg, age: 21.8 ± 1.4 years). AT stress, strain, and force were estimated from both ID and IDSO approaches. The two methods resulted in minimal differences (3.6–4.7%) in estimated peak AT stress, strain, and force (P = 0.051–0.054); however, IDSO estimates were greater (32.7–36.8%) during early-stance phase of running (P = 0.000–0.008). This difference in AT load during early-stance may be due to the inability of the ID to account muscle coactivation. The similarity between the peak AT loading for ID and IDSO methods revealed that the advantage of IDSO used to estimate muscle forces had little effect on the ankle plantar flexor peak forces during running. Therefore, the use of IDSO with a higher computational cost compared with ID may not be necessary for estimating AT stress during running.  相似文献   

16.
The purpose of this study was to quantify trunk axial rotation and angular acceleration in pitching and batting of elite baseball players. Healthy professional baseball pitchers (n = 40) and batters (n = 40) were studied. Reflective markers attached to each athlete were tracked at 240 Hz with an eight-camera automated digitizing system. Trunk axial rotation was computed as the angle between the pelvis and the upper trunk in the transverse plane. Trunk angular acceleration was the second derivative of axial rotation. Maximum trunk axial rotation (55 ± 6°) and angular acceleration (11,600 ± 3,100 °/s2) in pitching occurred before ball release, approximately at the instant the front foot landed. Maximum trunk axial rotation (46 ± 9°) and angular acceleration (7,200 ± 2,800 °/s2) in batting occurred in the follow-through after ball contact. Thus, the most demanding instant for the trunk and spine was near front foot contact for pitching and after ball contact for batting.  相似文献   

17.
The purpose of this study was to ascertain the typical metabolic power characteristics of elite men’s hockey, and whether changes occur within matches and throughout an international tournament. National team players (n = 16), divided into 3 positional groups (strikers, midfielders, defenders), wore Global Positioning System devices in 6 matches. Energetic (metabolic power, energy expenditure) and displacement (distance, speed, acceleration) variables were determined, and intensity was classified utilising speed, acceleration and metabolic power thresholds. Midfielder’s average metabolic power (11.8 ± 1.0 W · kg?1) was similar to strikers (11.1 ± 1.3 W · kg?1) and higher than defenders (10.8 ± 1.2 W · kg?1, P = 0.001). Strikers (29.71 ± 3.39 kJ · kg?1) expended less energy than midfielders (32.18 ± 2.67 kJ · kg?1, P = 0.014) and defenders (33.23 ± 3.96 kJ · kg?1, P < 0.001). Energetic variables did not change between halves or across matches. Across all positions, over 45% of energy expenditure was at high intensity (>20 W · kg?1). International hockey matches are intense and highly intermittent; however, intensity is maintained throughout matches and over a tournament. In isolation, displacement measures underestimate the amount of high-intensity activity, whereas the integration of instantaneous speed and acceleration provides a more comprehensive assessment of the demands for variable-speed activity typically occurring in hockey matches.  相似文献   

18.
Ice hockey requires rapid transitions between skating trajectories to effectively navigate about the ice surface. Player performance relates in large part to effective change-of-direction manoeuvres, but little is known about how those skills are performed mechanically and the effect of equipment design on them. The purpose of this study was to observe the kinetics involved in those manoeuvres as well as to compare whether kinetic differences may result between two skate models of varying ankle mobility. Eight subjects with competitive ice hockey playing experience performed rapid lateral (90°) left and right change-of-direction manoeuvres. Kinetic data were collected using force strain gauge transducers on the blade holders of the skates. Significantly greater forces were applied by the outside skate (50–70% body weight, %BW) in comparison to the inside skate (12–24%BW, p < 0.05). Skate model and turn direction had no main effect, though significant mixed interactions between leg side (inside/outside) with skate model or turn direction (p < 0.05) were observed, with a trend for left-turn dominance. This study demonstrates the asymmetric dynamic behaviour inherent in skating change-of-direction tasks.  相似文献   

19.
Abstract

The study examined the effect of caffeine supplementation on match activities and development of fatigue during a football match. In a randomised, double-blind cross-over design, two experimental football games separated by 7 days were organised between the junior teams of two professional football clubs (17.6 ± 1.1 years (±s), 71.7 ± 6.9 kg, 13.9% ± 5.0% body fat). The players ingested either a capsule of 6 mg · kg?1 b.w. caffeine or placebo (dextrose) 65 min prior to the matches. Match activities were assessed using the ZXY match analysis system, and a Yo-Yo intermittent recovery test–level 2 (Yo-Yo IR2) was conducted immediately post-game. Heart rate was monitored throughout the game, and blood samples were obtained at baseline, half-time and after the game. There were no differences between caffeine and placebo regarding total distance covered (10,062 ± 916 vs 9854 ± 901 m), high-intensity running (557 ± 178 vs 642 ± 240 m), sprinting distance (109 ± 58 vs 112 ± 69 m) or acceleration counts (123 ± 31 vs 126 ± 24). In both trials, players displayed lower (< 0.05) values in total distance and acceleration counts in the last 15 min compared to all other 15-min periods of the matches. Post-game Yo-Yo IR2 performance was not different between game trials (caffeine: 829 ± 322 m; placebo 819 ± 289 m). In conclusion, oral caffeine administration does not appear to have an ergogenic effect in young football players during match play.  相似文献   

20.
ABSTRACT

Purpose

To compare the occurrence and characteristics of repeated-sprint (RS) activity in elite team sport competition when classified according to speed and/or acceleration, and their interaction via metabolic power (Pmet). Methods: Elite male hockey players (N = 16) wore player-tracking devices in six international matches. Sprint efforts were defined using four separate classifications: speed >5.5 m?s?1, acceleration >1.5 m?s?2, speed-or-acceleration, and Pmet >25.5 W?kg?1. RS bouts were defined as ≥3 efforts with mean recovery ≤21 s. For Pmet, RS bouts were also classified using a maximal recovery period ≤21 s. The number of sprint efforts and RS bouts, and the number of efforts, effort durations and recovery periods within RS bouts, were compared across each classification method, and between mean and maximal recovery criteria. Results: More RS bouts were identified via Pmet (8.5 ± 2.8) than either speed and/or acceleration, and comprised more efforts (4.0 ± 0.4) with shorter recovery periods (11.5 ± 1.8 s). Fewer RS bouts (7.3 ± 2.8 vs. 8.5 ± 2.8) were identified with a maximum rather than mean recovery criterion. Conclusions: Definitions of sprint efforts and recovery periods which reflect ATP depletion and replenishment via Pmet suggest that RS activity occurs frequently in team sport competition, and is more demanding than when speed and/or acceleration are used to define RS activity in variable-speed locomotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号