首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
构造“零值”代数式,解一类条件代数式求值问题,整体意识强,简捷明快、现举例说明.例1 已知x=2-5~(1/5),那么x~4-8x~3+16x~2-x+1的值是(?).(第六届“希望杯”初二数学竞赛题)解∵x=2-5~(1/5),∴2-x=5~(1/5).两边平方,整理得x~2-4x-1=0.∴x~4-8x~3+16x~2-x+1=x~2(x~2-4x-1)-4x(x~2-4x-1)+(x~2-4x-1)-x+2=-x+2=5~(1/5)  相似文献   

2.
解无理方程,通常是采用两边平方的办法。但这样做往往要进行两次以上的平方,出现高次方程,给解方程带来困难。本文介绍另一种解法——“平方差法”。先看例1 解方程(x~2+x-2)~(1/2)-(x~2+x-5)~(1/2)=1 (1) 解:由恒等式((x~2+x-2)~(1/2))~2-((x~2+x-5)~(1/2))~2=3 (2) (2)÷(1)得(x~3+x-2)~(1/2)+(x~2+x-5)~(1/2)=3 (3) (1)+(3)化简得(x~2+x-2)~(1/2)=2 (4) 两边平方整理得x~2+x-6=0 解得x_1=2,x_2=-3。经检验知,x_1=2,x_2=-3都是原方程的根。用这种方法解无理方程,虽然避免了高次方程的出现,但是有可能遗根。请看例2 解方程(x~2+5x-6)~(1/2)+2=(x~2+x-2)~(1/2)+22~(1/2) 解:将原方程变形为(x~2+5x-6)~(1/2)-(x~2+x-2)~(1/2)  相似文献   

3.
错在哪里?     
题:a是什么实数时,(x)/(x-2)+(x-2)/(x)+(2x+a)/(x(x-2))=0只有一个实数根,并求出这个实根。解原方程可变为(2x~2-2x+4+a)/(x(x-2))=0要使原方程只有一个实根,只要使方程2x~2-2x+4+a=0的判别式△=4-8(4+a)=0,解得 a=-7/2把a=-7/2代入方程2x~2-2x+4+a=0解得 x=1/2故当a=-7/2时,原方程只有一个实根x=1/2。解答错了!错在哪里这里混淆了只有一个根与重根的概念,其实由△=4-8(4+a)=0得a=-7/2,从而  相似文献   

4.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

5.
多项式除法的应用广泛,不仅可以利用它来解方程、因式分解等。它还有一些妙用,今举几个例子于下。一、求值例1,若x=(19-8(3~(1/2))~(1/2),试求(x~4-6x~3-2x~2 18x 23)/(x~2-8x 15)之值(1985年全国初中联赛试题) 解:∵ x=(19-8(3~(1/2))~(1/2)=(4-3~(1/2))~2)~(1/2)=4-3~(1/2) ∴(x-4)~2=3即 x~2-8x 13=0 应用多项式除法得  相似文献   

6.
用适当方法构造与原问题有关的方程,利用方程的知识使原题获解,此为“辅助方程法”。一、解方程(组) 例1 解关于x的方程 x~4 6x~3-2(a-3)x~2 2(3a 4)x 2a a~2=0 解:化为a的方程: a~2-2(x~2-3x-1)a (x~4-6x~3 6x~2 8x)=0解得a=x~2-4x,a=x~2-2x-2。故得原方程的解x_(1,2)=2±4~(1/2) a,x_(3,4)=1±(3 a)~(1/2)(注;a<-3时,有虚根)  相似文献   

7.
1.方程组{ax+y=a~2 x+ay=1 有多少解? 2.方程组{ax+y+z=1 x+ay+z=a x+y+az=a~2 有多少解?3.解方程|x-1|+|x-2|+|x-3|=x。 4.解方程(x+3-4(x-1)~(1/2)~(1/2)+(x+8-6(x-1)~(1/2))~(1/2)=1。5.下列方程是否有实根?  相似文献   

8.
在初中数学竞赛中,常出现一类代数式求值问题,如: (1) 已知x=2-3~(1/2),求x~4-5x~3+6x~2+5x的值。(1986年上海市初中数学竞赛试题) (2) 若x=(5~(1/2)-1)/2,则x~4+x~2+2x-1=____。(第六届全国部分省市初中数学通讯赛试题) (3) 已知x=(111~(1/2)-1)/2,求多项式(2x~5+2x~4-53x~3-57x+54)~(1989)值。(1989年浙江省初中二年级数学竞赛试题) (4) 已知a=(22~(1/2)+5~(1/2))/(5~(1/2)-2~(1/2))求值:a~5-7a~4+6a~3-7a~2+11a+13。(第三届求是杯数学竞赛初二试题) (5) 当x=3~(1/2)-1时,代数式 (x+4)/(x~3+6x~2+5x-3~(1/2)-15)的值是多少?(88—89学年度广州、福州、武  相似文献   

9.
关于因式分解的常用方法,中学课本中已作了介绍。本文要探讨的是根据题目的特征,运用比较特殊的方法,进行因式分解的问题。例1 在复域内分解: (x+1)(x+2)(x+3)(x+6)-3x~2 解原式=(x~2+7x+6)(x~2+5x+6)-3x~2推敲上式的特征,可知若令y=x~2+6x+6,原式就化为: (y+x)(y-x)-3x~2 =y~2-4x~2=(y+2x)(y-2x) =(x~2+8x+6)(x~+4x+6) =(x+4-10~(1/2))(x+4+10~(1/2)) (x+2-(2~(1/2))i)(x+2-(2~(1/2))i) 例2分解:(ab+1)(a+1)(b+1)+ab 解原式即(ab+1)[ab+1+a+b]+ab,若令(ab+1)=A,可得: 原式=A(A+a+b)+ab =A~2+(a+b)A+ab=(A+a)(A+b)  相似文献   

10.
例1、计算(x-1)/(x~2-3x+2)+(x+1)/(x-2)-(x~2-x-6)/(x~2-4) 解:原式=(x-1)/[(x-1)(x-2)]+(x+1)/(x-2)[(x-3)(x+2)]/[(x+2)(x-2)]=1/(x-2)+(x+1)/(x-2)-(x-3)/(x-2)=[1+(x+1)-(x-3)]/(x-2)=5/(x-2) 说明:本题看起来是异分母的分式相加减,但把两个较复杂的公式的分子、分母分解因式后,约去公因式,就变简单了,且是同分母的分式相加减。若不这样做,则会异常繁杂。  相似文献   

11.
第一试一、解方程:(x+3)~(1/2)=|x-2|-1.解:先限定 x≥2:这时|x-2|=x-2,原方程化为(x+3)~(1/2)=x-3,x+3=x~2-6x+9,∴x~2-7x+6=0,(x-6)(x-1)=0,∴x_1=6,x_2=1(x_2不合我们的限定,舍  相似文献   

12.
例1 x为实数,求x~4+4x+4的最小值.解原式=(x~4-2x~2+1)+(2x~2+4x+2)+1 =(x~2-1)~2+2(x+1)~2+1.因为(x~2-1)~2≥0,(x+1)~2≥0,  相似文献   

13.
平均值法是数学中常用的解题方法,本文拟介绍平均值法在分解因式中的应用,这往往是许多教师容易忽略的。例1 分解因式(x~2-2x)(x~2-2x-2)-3。解:x~2-2x与x~2-2x-2的平均值为M=x~2-2x-1。∴原式=(M+1)(M-1)-3=M~2-4=(M+2)(M-2)=(x~2-2x+1)(x~2-2x-3)=(x-1)~2(x+1)(x-3)。例2 分解因式 4(x+5)(x+6)(x+10)(x+12)-3x~2。  相似文献   

14.
转化是一种常见的有效的数学思想方法,根据问题的特点转化为易解决的新问题,本文仅通过解方程来说明这种方法的应用。例1 解方程:(x-2 2((x-3)~(1/2)))~(1/2) (x 1 4((x-3)~(1/2)))=5 解:原方程转化为:(((x-3)~(1/2) 1)~2)~(1/2) (((x-3)~(1/2) 2)~2)~(1/2)=5, ∴ (x-3)~(1/2)=1,∴ x=4 经检验:x=4是原方程的解例2 解方程(x~2 12x 99)~(1/2) (x~2-12x 99)~(1/2)=20 解:原方程转化为:((x 6)~2 63)~(1/2) ((x-6)~2 63)~(1/2)=20 设y~2=63,方程又可转化为:以(-6,0)、(6,0)为焦点,长轴2a=20的椭圆方程,易知2b=2((10~2-6~2)~(1/2))=16故椭圆方程为:x~2/10~2  相似文献   

15.
“十字相乘法”是初中教材中应用较广的内容,但一般学生往往习惯于直接的应用,其实稍加变化,可应用得更灵活,并可从中培养学生灵活解题的能力,现举例说明如何更广泛地应用“十字相乘法”。例1 解方程2x~2+3x-5(2x~2+3x+9)~(1/2)+3=0。解:原方程可化为2x~2+3x+9-5(2x~2+3x+9)~(1/2)-6=0,如果我们以(2x~2+3x+9)~(1/2)作为一个变量X,则方程便是X~2-5X-6=0,用十字相乘法,得((2x~2+3x+9)~(1/2)-6)((2x~9+3x+9)~(1/2)+1)=0由(2x~2+3x+9)~(1/2)=6,解得x_1=-9/2,x_2=3。而(2x~2+3x+9)~(1/2)=-1,无解。经检  相似文献   

16.
对于比较复杂的多项式分解因式,运用换元法可使多项式中的数或式的关系明朗化,使问题化难为易、简洁清晰.例1 分解因式(x~2+x+3)(x~2-6x+3)+12x~2.解设 x~2+3=y,则原式=(y+z)(y-6x)+12x~2=y~2-5xy+6x~2=(y-2x)(y-3x)=(x~2-2x+3)(x~2-3x+3).例2 分解因式(x-1)(x-2)(x-3)(x-4)-120.解由于(x-1)(x-4)=x~2-5x+4,(x-2)(x-3)=x~2-5x+6,  相似文献   

17.
在分式加减运算中,若能根据分式的结构特点,使用通分的技巧,不仅可以保证运算的正确性,而且可以提高解题的速度,收到事半功倍之效。一、整体通分例1计算x3x-1-x2-x-1。解:原式=x3x-1-(x2+x+1)=x3x-1-(x-1)(x2+x+1)x-1=x3x-1-x3-1x-1=1x-1。二、拆项通分例2计算a-bab+b-cbc+c-aca。解:原式=(1b-1a)+(1c-1b)+(1a-1c)=1b-1a+1c-1b+1a-1c=0。三、一次通分例3计算1x2+3x+2+1x2+5x+6+1x2+4x+4。解:原式=1(x+1)(x+2)+1(x+2)(x+3)+1(x+1)(x+3)=x+3+x+1+x+2(x+1)(x+2)(x+3)=3(x+2)(x+1)(x+2)(x+3)=3(x+1)(x+3)。四、逐步通分例4计算1x-1-1x+1-2x2+1。…  相似文献   

18.
<正> 代数一、填空: 1、计算:[(-2)~2]~(-(1/2))+2°/(2~(1/2)) -1/(|1-2~(1/2)|)=-(2~(1/2)+1)/2 2、把x~5y-x~3y+2x~2y-xy分解因式为xy(x~2+x-1)(x~2-x+1) 3、已知((2a+b~(-1))~2+|2-a~2|)/(a+2~(1/2))=0,则(a-b)/(a+b)=(3/5) 4、计算1/2lg25+lg2-lg0.1~(1/2)-log_29×log_32=-(1/2) 5、设A={x:|x|<2}, B={x:x~2-4x+3≤0},则A∩B=1≤x<2;A∪B=-23的解集为{x:x>4}∪{x:0相似文献   

19.
每年的中考与竞赛都有代数式求值这类题,并且这些题的解法各异,灵活多样.解这类题,若能抓住题目的特点,巧妙代入,就可达到事半功倍的效果.一、直接代入求值例1已知x=2-3√,求2-x(7+43√)x2-(2+3√)x+3√的值.解:把x=2-3√代入,得原式=2-(2-3√)(7+43√)(2-3√)2-(2+3√)(2-3√)+3√=3√(7+43√)(7-43√)-(2+3√)(2-3√)+3√=3√1-1+3√=1.二、先化简,后代入求值例2已知x=2√+2,求x3x-1-x2-x-1的值.解:原式=x3-(x-1)(x2+x+1)x-1=x3-(x3-1)x-1=1x-1.当x=2√+2时,原式=12√+2-1=12√+1=2√-1.三、先代值,后化简求值例3已知x=3√,y=2,那么代数式…  相似文献   

20.
等比数列前n项的求和公式的推论: (a-b)(a~(n-1)+a~(n-2b)+…+b~(n-1))=a~n-b~n以及它的特殊形式: (1-q)(1+q+q~2+…+q~(n-1))=1-q~n都是因式分解的重要公式,而因式分解则是解题(如求值,证明等)的重要手段,以下各例,可以说明。例1 分解因式X~(12)+x~9+x~6+x~3+1(1978年全国数学竞赛决赛题) =(x~4+x~3+x~2+x+1) (x~8-x~7+x~5-x~4+x~3-x+1) 例2 已知ω=e~((2π/5)i),求1+ω~4+ω~8+ω~(12)+ω~(16)之值。解原式=((1-ω~4)(1+ω~4+ω~8+ω~(12)+ω~(16))/1-ω~4 =(1-ω~(20))/(1-ω~4)=(1-(ω~5)~4)/(1-ω~4) ∵ω~5=(e~((2π/5)i))~5=e~(2πi)=1 ω~4=e~((8/5)πi)≠1 ∴原式=0 例3 求能使2~n-1被7整除的所有正整数n。(第六届国际数学竞赛题) 解分二种情况讨论。 (1)如果n是3的倍数,我们设n=3k(k为正整数),这时  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号