首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
幻方在我国古代叫纵横图,是由一些连续的整数组成一个满足一定条件的数表。本文以构造的方法证明幻方的存在性.定义1:整数 k~n~2+k-1按某种方法排成1个n×n 矩阵.若矩阵的每行、每列、及两对角线的 n 个数之和均相等,称该矩阵为 k~n 幻方矩阵、或 k~n 幻方.特别、当k=1时称为 n 阶幻方矩阵,或是 n 阶幻方.其每行(列)的 n 数之和称为幻方的和,记为 Sn.由于任何一个 k~n 幻方总可以写成一个 n 阶幻方与(k-1)乘元素为1的方阵之和.所以在本文中只讨论 n 阶幻方.由定义可知,一个 n 阶幻方,其行与行之间、列与列之间的无互不相同,且和相等.因此  相似文献   

2.
<正> 一些特殊行列式的计算很繁难,成人学员往往感到十分困难。有些专业对行列式计算的要求较高,为了解决这一教学难点,我将行列式的性质进行推广,把矩阵的分块计算法移植到行列式的计算中来,提高了计算技巧性,收到了较好的效果。设D为K阶行列式,K=m·n(m、n∈N)将D分为n~2个m阶的小方阵,即,  相似文献   

3.
如果一个n阶幻方,其2n条泛对角线所含n数之和也等于幻和,则称此为完美幻方.现在人们已经知道奇阶完美幻方、双偶阶完美幻方均可由1-n~2中n~2个数构成.但单偶阶(4m 2阶)完美幻方却未能有人编造出来,于是许多人猜想,用1-n~2中各数不能构造成单偶阶完美幻方.下面我们就来证明这个问题.  相似文献   

4.
对于任意的不小于3的整数n,总存在n阶幻方〔1〕。本文要将讨论幻方的构造形式,并给出用广义拉丁方构造幻方的方法,下面先引入几个定义。拉丁方:设S是n元素集,A是S上的n×n方阵。若A的每行和每列都是S中n个元的排列,则称A为S上的拉丁方。正交拉丁方:设A_1={aij}是n元集s_1上的拉丁方,A:={bij)是n元集S:上的拉丁方。若2元有序对(aij,bij)(i,j=1,2,…,n)互不相同,则称拉丁方A_1与  相似文献   

5.
有些与方程有关的竞赛题常常通过构造二次方程来解.题型不同,构造方法各异.1.根据方程根的定义构造例1 若 m~2=m+1,n~2=n+1,且 m≠n,则 m~5+n~5=____(江苏省第四届初中数学竞赛题)  相似文献   

6.
由 n~2个不同的自然数排成 n 行 n 列的方阵,如果 n 行中的每一行的 n 个数之和、n 列中的每一列的 n 个数之和、两条对角线中的每一条对角线上的 n 个数之和(共2n 2个和)都相等(都等于所有的 n~2个数的总和的1/n),那么就说这样的方阵是 n 阶幻方,幻方中任一行(列或对角线)的 n 个数之和叫做该幻方的幻和.幻方是一个既古老又活  相似文献   

7.
由连续自然数1,2,3……N(N=n~2,n>3,n非单偶数)组成的n阶数字方阵,都可以构成完美幻方.本文所创立的幻方,都可以由简单方程求得幻方所有的数.尤其是当n为双偶数时,不论n值多大,只要从方程中求出四个数,即可一气呵成,编成具有特殊性质的超级幻方.其特点:(1)方程中的数由1,2,3…N连续自然数组成.(2)方阵中任何行、列以及所有左右斜对用线(共2n条)诸数和为幻和S_n=n(n~2 1)/2.(3)方阵中对称位置上的数,具有对应关系.(4)在方阵中,取任何相邻的四个数组成正方形,其数值和为幻和S=2(n~2 1).  相似文献   

8.
幻方编排法     
1 n阶自然方阵n阶幻方,均与n阶自然方阵有关。故先述n阶自然方阵的若干性质,以备应用。 n阶自然方阵N(a_(ij))是指这里,i,j 分别通过1、2、……n. 定理一 行列式│N│=│a_(ij)│展开式的每一项(不计符号)各因数和等于n(n~2+1)/2. 证 行列式项的因数来自不同的行与不同的列,因此  相似文献   

9.
幻方中的完美幻方尤称奇妙,即n~2个互异自然数排成n行n列,不仅每行、每列数字和相等,二主对角线数字和相等,而且2(n-I)条泛对角线(折对角线)数字之和也都相等。4阶和5阶的完美幻方已经找到。例如  相似文献   

10.
数学的定义是建立数学大厦的基石,求与一元二次方程的根有关的代数式之值的问题时,若能恰当地用根的定义来解,则简捷明快,事半功倍.一、求代数式的值例1若m、n是关于x的方程x~2+(p一2)x+1=0的两个根,求代数式(m~2+mp+1)(n+np+1)的值.析解若展开变形求解,则相当繁冗.但依题意易想到方程根的定义,有m~2+(p-2)m+1=0,n~2+(p-2)n+1=0.再观察待求式,又可想到将此二式继而变形为m~2+mp+1=2m,  相似文献   

11.
本文给出一个自然数能分解为两个连续自然数乘积的充分条件,并举数例说明其应用。 [定理] 设n是大于1的任意奇数,则数1/4(n~2-1)可以分解成两个连续自然数的乘积。证明∵n是大于1的奇数,∴可设n=2m+1(m∈N) ∴  相似文献   

12.
本文利用奇阶全对称幻方的构造规律,快速构造一类n~2阶(n为奇数,n≥5,(h,3)=1)母子全对称幻方  相似文献   

13.
高中数学课本第四册复习题八第8(9)题:求y=arc sin(msinx-ncosx)/(m~2 n~2)~(1/2)的导数。解:y′=1/(1-(msinx-ncos)~2/(m~2 n~2))~(1/2)·(mcosx nsinx)/(m~2 n~2)~(1/2) =(m~2 n~2)~(1/2)/(m~2 n~2-m~2sin~2x 2mnsinxcosx-n~2cos~2x)~(1/2)·(mcosx nsinx)/(m~2 n~2)~(1/2) =(mcosx nsinx)/(m~2cos~2x 2mnsinxcosx n~2sin~2x)~(1/2)=(mcosx nsinx)/|mcosx nsinx| =1 当mcosx nsinx>0 =-1 当mcosx nsinx<0于是产生了一个问题:当mcosx nsinx=0时,y的导数存在吗?我们不妨先设m≠0,n≠0 mcosx nsinx=0 tgx=-m/n即在x=kπ-arctgm/n(K∈J)时y的导数是否存在,  相似文献   

14.
一、选择题: 1.设M、N是两个非空集合,定义M*N={(m,n)|m∈M,n∈N},若M={3,4,5}.N={4,5,6,7},则M*N中元素的个数是( ).  相似文献   

15.
与自然数n有关的不等式的证明通常采用数学归纳法。这里我们给出可与数学归纳法相媲美的新方法——自然数函数单调性法。定理若n、n_0∈N,且n>n_0,f(n)是自然数n的单调递增(或单调递减)函数且f(n_0)≥m(或≤M),则f(n)≥m(或≤M)。由函数的单调性知上面的定理是显然的,下面举例说明它的应用。例1 求证:当n是不小于3的整数时,有n~(n+1)>(n+1)~n。证明设f(n)=((n+1)~n)/(n~(n+1)),  相似文献   

16.
例.设m~2 2m-1=0,n~4-2n~2-1=0.求(mn~2 n~2 1/m)~(1994)的值。解由m~2 2m-1=0得m≠0。两边除以m~2得(1/m)~2-2(1/m)-1=0 (1)n~4-2n~2-1=0得(n~2)~2-2n~2-1=0。 (2)由(1)、(2)知,(1/m)与n~2是方程x~2-2x-1=0的两个实数根,有(1/m) n~2=2,(1/m)·n~2=-1,故原式=(n~2 n~2/m 1/m)~(1994)=(2-1)~(1994)=1。这一解答有两处错误:第一,n~2不能看作方程x~2-2x-1=0的根。因为△=8>0,方程应有两个不同的实数根,但n~2只有一根1 2~(1/2),另一根1-2~(1/2)没有意义。因此,本题应把n~4-2n~2-1=0当作一个一元四次方程来解。  相似文献   

17.
因为a、b是一元二次方程x~3-(a b)x ab=0的两个根,设S_0=a~0 b~0,S_1=a b, S_2=a~2 b~2,S_2-(a b)S_1 abS_0=0 S_3=a~3 b~3,S_3-(a b)S_2 abS_0=0 S_n=a~n b~n,S_n-(a b)S_(n-1) abS_(n-2)=0 所以当n≥2时,有递推式,S_n-(a b)S_(n-1) abS_(n-2)=0 (*) 因为递推式由一元二次方程推出,结果又与一元二次方程极其类似,所以它与一元二次方程一样用途较大,下举数例说明。例1 若m~2=m 1,n~2=n 1,且m≠n,则m~5 n~5=____(江苏省第四届初中数学竞赛试题)  相似文献   

18.
幻方是组合数学中的一个数字游戏,一个n阶幻方是由自然数1,2,3,……,n~2排成的方阵,其中每行每列以及对角线上各数有相同的和S,数S叫做幻方的幻和,因为n阶幻方中所有自然数的和为:  相似文献   

19.
笛卡尔积图P_m×P_n的IC-着色   总被引:1,自引:1,他引:0  
设G是一个连通图,f个将顶点集V G对应到正整数集N的函数,对G的任意子图H,我们定义fs H=Σν∈V(H)fν。如果对任意的整数k∈Σ1,fs GΣ,存在一个G的连通子图H,使得fs H=k,则称f为图G的一个IC-着色。并定义图G的IC-指数M G为使得顶点和最大时的fs G。对两条路的笛卡尔图的IC-着色进行研究,得到了它的一个下界:对任意的2≤m≤n,有M Pm×Pn≥2m-1 2n-1。  相似文献   

20.
数学归纳法是证明关于自然数的无穷多个命题的一种重要方法,而数学归纳法的理论依据是自然数的归纳公理。所谓自然数的归纳公理,是意大利数学家皮亚诺(G.Peano,1858~1932)在1889年创立的自然数系的公理化定义中的第5条公理。这条公理通常表达为: 归纳公理 设M是自然数集N的一个子集,若M满足,(1)1∈M:(2)若K∈M,人则K 1∈M,则M=N,即M包含了所有的自然数。 自然数集还有另一个重要性质是 最小数原理 设M是自然数集N的一个非空子集,则必存在一个自然数M∈N,对一切n∈M都有m≤n,即m是M中的最小数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号