首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
如果一元二次方程ax2+bx+c(a≠0)的系数和a+b+c=0,则不难发现:x=1满足方程ax2+bx+c=0,即x=1是该方程的一个根.反之,如果x=1是一元二次方程ax2+bx+c=0(a≠0)的一个根,  相似文献   

2.
《中学理科》2006,(7):20-22,46
1.定义:如果y=ax^2+bx+c(a、b、c是常数,a≠0),那么y叫做x的_____。而当b=c=0时,y=ax^2(a≠0)是最特殊的二次函数。  相似文献   

3.
解一些与一元二次方程有关的数学问题,我们必须综合运用判别式和韦达定理这样进行,才能获得正确的结果.例1已知a、b、c为正数,若二次方程ax‘+bx+c=0有两个实数根,那么方程a‘x’+6‘x+c’-0()(A)有两个不等的正根;(B)有一个正根和一个负根;(C)有两个不等的负根;(D)不一定有实数根.门又如年祖冲之杯初中数学邀请赛试题)解由二次方程axZ+bx+c=0有两个实数根,那么西一矿4ac>0,0>4ac>Zac.凸。=b4-4G2C2=(b‘+ZQC)(6’ZC),又62+Zac>0,bZ-Zac>0,乙’>0.二次方程a‘x‘+b‘x+c‘=0…  相似文献   

4.
二次函数y=ax^2+bx+c(a≠0)与一元二次方程ax^2+bx+c=0(a≠0)的关系是:二次函数y=ax^2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax^2+bx+c=0(a≠0)的根;反之,一元二次方程ax^2+bx+c=0(a≠0)的根是二次函数y=ax^2+bx+c(a≠0)的图象与x轴交点的横坐标.它们之间的这种关系在求解相关的问题时,如果能够灵活地运用,则不仅可以使解题过程大为简化,而且还可以获得巧解.  相似文献   

5.
在一元二次方程ax^2+bx+c=0(a≠0)中,如果字母系数的和a+b+c=0,那么x1=1一定是方程的根,且另一根为x2=c/a;反之如果有一根为x1=1,则a+b+c=0.  相似文献   

6.
二元一次方程一般式可表示为:ax by=c(a≠0,b≠0)方程变形→y a/bx=c/b→y=-a/bx c/b 令-a/b=k,c/b=h,则原方程变形为y=kx h(k≠0)的形式,即将方程转化为关于x的一次函数,其中x为自变量,函数y=kx h在直角坐标系中表示一条直线,k表示直线的倾斜程度,b表示直线与y轴交点的纵坐标. 方程组中任何一个方程的解都有无数多个,两个方程的公共解便是方程组的解,有时  相似文献   

7.
函数图象与其系数有如下关系:正比例函数y=kx(k≠0)1.k>0图象在一、三象限内,y值随x值的增大而增大.2.k<0图象在二、四象限内,y值随x值的增大而减少.反比例函我1.k>0图象的两个分支分别在第一、三象限内,在每个象限内,y的值随x值的增大而减小;2.k<0图象的两个分支在第二、四象限内,在每个象限内,y值随x值的增大而增大.一次函数y=kx+b(k≠0)1.k>0y随x的增大而增大;k<0y随x的增大而减小;2.b>0、b=0、b<0图象与y轴分别交手原点的上方、原点、原点的下方.一次函数y=ax2+bx+c(a≠0)1.a>0抛物线开口向上…  相似文献   

8.
若ax^2+bx+c=0(a,b,c∈R,且a≠0)有两实根x1,x2,则x1+x2=-b/a.我们常用这个韦达定理解决解析几何中的直线和圆锥曲线相交问题,如直线l:y=kx+t与圆锥曲线C:f(x,y)=0相交于不同两点A,B,  相似文献   

9.
一元二次方程ax2+bx+c=0(a≠0),当有一个根是“1”时,根据方程根的定义得a+b+c=0,反之,如果a+b+c=0时,方程的根又分别是什么呢?证明:∵a+b+c=0∴b=-a-c则ax2+bx+c=0变为ax2+(-a-c)x+c=0可分解为(ax-c)(x-1)=0解得:x1=1x2=ac也就是方程ax2+bx+c=0(a≠0)中,当a+b+c=0时,有一个根是1,另一个根是c/a,借这个特殊性质来巧解题。1、巧求一元二次方程的两个根例1解关于x的方程:mx2-(m-n)x-n=0(m≠0)解:∵m-(m-n)-n=0∴x1=1x2=-(mn).2、巧求代数式的值已知:一元二次方程(ab-2b)x2+2(b-a)x+2a-ab=0有两个相等的实数根,求1a+1b的值。解:方程(ab-2b)x2+2…  相似文献   

10.
二次函数y=ax2+bx+c(a≠0)的图像是抛物线,是轴对称图形,对称轴为x0=b/2a,即若抛物线Y=ax2+bx+c(a≠0)上有两点(x1,y)、(x2,y),则有x1+x2/2=x0成立,利用这一简单性质,可以迅速解决一类中考题.  相似文献   

11.
如果一元二次方程ax2 bx c=0(a≠0)的两个根是x1,x2,那么x1 x2=-ba;x1x2=ca.这就是著名的韦达定理.根据韦达定理,可得出以下两个推论.推论1设x1,x2是一元二次方程ax2 bx c=0(a≠0)的两根,则x1-x2=Δ姨a,其中Δ=b2-4ac.利用韦达定理很容易证明推论1.推论2如果一元二次方程ax2 bx c=0(a≠0)的两根之比为k,则kb2=(1 k)2ac.证明:设x1,x2是方程ax2 bx c=0(a≠0)的两个实数根,则x1x2=k,x1 x2=-ba,x1x2=ca .消去方程组中的x1和x2,得kb2=(1 k)2ac. 下面谈谈以上两个推论的应用.例1已知开口向下的抛物线y=ax2 bx c与x轴交于M、N两点(…  相似文献   

12.
在解或判别实系数一元二次方程(或可化为此类方程)时,根的判别式Δ=b2-4ac起着极大的作用.实系数二次函数y=ax2+bx+c(a≠0)有很多性质,其中当且仅当Δ=b2-4ac≤0时,y=ax2+bx+c保号.如果在实系数二次函数y=ax2+bx+c(a≠0)中,将系数a,b,c都改为对某些变量的实质函数,就可得到“广义判别式”的概念.即:设a=f(x,y),b=g(x,y),c=φ(x,y)都是以x,y为未知数的一个二元方程,则称Δ=b2-4ac为二元方程ax2+bx+c=0的“广义判别式”.1利用“广义判别式”可判断二元实函数系数方程根的情况实系数一元二次函数y=ax2+bx+c(a≠0)的保号性可以推广到关于x,y的二…  相似文献   

13.
《中学生数理化》2010,(1):41-42,45
知识梳理 1.二次函数与一元二次方程之间的关系. (1)抛物线y=ax^2+bx+c(a≠0)与x轴交点的横坐标就是一元二次方程ax^2+bx+c=0的根. (2)一元二次方程ax^2+bx+c=0的根可以看做抛物线y=ax^2与直线y=-bx-c交点的横坐标.  相似文献   

14.
一般而言,对于二次方程ax12+bx1+c=0,ax22+bx2+c=0(a,b,c为常数,且a≠0),其中的x1,x2可看作方程ax2+bx+c=0(a≠0)的两根的前提是x1≠x2,这是因为当x1=x2时,x1与x2并不能完全保证是方程ax2+bx+c=0的两根,此时存在两种可能:  相似文献   

15.
我们知道,对于实系数一元二次方程ax~2 bx c=0(a、b、c∈R,a≠0),可用△=b~2-4ac与0的关系来判断有无实数根,并且可用求根公式求此方程的根,那么对于复系数一元二次方程。ax~2 bx c=0(a、b、c∈C,a≠o)怎样求根,怎样判断实根的情况? 1.求根公式 命题(一):方程ax~2 bx c=0(a、b、c∈C,a≠0)的求根公式是:x=-b [(b~2—4ac)的平方根]/(2a) .  相似文献   

16.
我们知道:若x1是方程ax2+bx+c=0(a≠0)的根,则ax12+bx1+c=0,反之若ax12+bx1+c=0(a≠0),则x1是方程ax2+bx+c=0的一个根,活用方程根的定义的正、反两方面知识,进行解题是一种重要的方法,现举例说明·一、正用方程根的定义例1(“祖冲之杯”数学邀请赛题)已知关于x的方程ax2+bx+c=0(a≠0)的两根之和是m,两根平方和是n,求3an2+c3bm的值·解:设方程的二根是α、β,则aα2+bα+c=0,aβ2+bβ+c=0·两式相加,得a(α2+β2)+b(α+β)+2c=0,即an+bm+2c=0,所以2c=-(an+bm),所以3an2+c3bm=-31·例2(河北省初中数学竞赛题)求作一元二次方程,使它的根是方程x…  相似文献   

17.
y=ax2+bx+c(a、b、c是常数,a≠0)是二次函数的一般形式,图象是抛物线.通过配方,可以把二次函数表示成y=a(x-h)2+k的形式,此时h=-b2a,k=4ac-b24a.由此可以确定这条抛物线的对称轴是直线x=-b2a,顶点坐标是(-b2a,4ac-b24a).当a>0时,抛物线开口向上;当a<0时,抛物线开口向下.如果知道一条抛物线上三点的坐标,那么可用待定系数法求出相应的二次函数的解析式.关于二次函数的图象,教科书13.7节用了很大篇幅讲述了用平移法作出y=ax2+bx+c的图象(即由抛物线y=ax2左右上下平移得到)…  相似文献   

18.
例1 一元二次方程的根与系数的关系(韦达定理) 1.韦达定理的内容 如果ax^2+bx+c=0(a≠0)的两个根是x1,x2, 那么x1+x2=-b/a,x1*x2=c/a.  相似文献   

19.
定理:如果1是一元二次方程。2+bx+c=0(a一0购根,那么十十b++=0;反过来,如果十十b+c一队Nua个十hi+c=0,所以1是一元二次方程ax’+bx*C二0的根.应用一元二次方程axZ+bx+c二0的上述正、逆定理解题,常常能收到化繁为简、化难为易的效果.现分三方面介绍其应用如下:一、定理的应用例1已知方程5X2+h6=0的一个根是1,求它的另一个报及k的值.解…l是方程SX’+he-6二0的一个根,…5+k-6=0.·k一回.设另一个根为X,则由韦达定理,得k‘l‘.l一5。5““5”例2已知在凸ABC中,a、b‘c为凸ABC的三边,又方程。2x…  相似文献   

20.
对于实数系一元二次方程ax2+bx+c=0 (a≠0 ),如果b2-4ac>0,那么方程有两个不相等的实数根;b2-4ac<0,那么方程没有实数根.这就是一元二次方程根的判别式定理,我们把△=b2-4ac叫做方程ax2+bx+c=0 (a≠0 )的判别式.这个定理的逆命题也是成立的.判别式定理揭示了一元二次方程的系数与它的根之间的内在联系,它的应用主要有以下几个方面.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号