首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
百合科六属十五种植物的细胞学研究   总被引:2,自引:0,他引:2  
本文对云南西北部百合科6属15种的染色体和核型进行了报道。 (1)Clintonia udensis Trautv.et Mey间期核属于浓密分散型,前期染色体属于渐变型,分裂中期体细胞染色体2n=14=8m+4sm+2st(2SAT),核型不对称性属于2A型;(2)鹿药属四个种间期核属于复杂中央微粒型,前期染色体属于中间型,分裂中期体细胞染色体分别为Smilacina henryi(Baker)Wang et Tang,2n=36=12m+16sm+6st+2t(2SAT),  核型不对称性属于2C型;Smilacina fusca Wall., 2n=36=14m(2SAT)+12sm+10st(2SAT),  核型不对称性属于2B型;  Smilacina tatsienensis(Franch.)Wang et Tang,  2n=36=22m+2sm+2st(2SAT),  核型不对称性属于2C型;Smilacina atropurpurea(Franch.)Wang et Tang,2n=36=18m+6sm(2SAT)+12st,核型不对称性属于2C型;(3)黄精属四个种的间期核属于复杂中央微粒型,前期染色体属于中间型,分裂中期体细胞染色体分别为Polygonatum kingianum Coll.et Hesml.,2n=30=12m(2SAT) +6sm+lst+2t,  核型不对称性属于2C型;  Polygonatum cirrhifolium(Wall.)  Royal,2n=30=10m+4sm+12st+4t,  3C型;  Polygonatum  curvistylum  Hua,  2n=78=24m(2SAT)+14sm(6SAT)+40st,  核型不对称性属于3C  型;  Polygonatum  cathcartii  Baker,2n=32=12m+6sm+10st+2t+2bs,核型不对称性属于2C型;(4)百合属,假百合属,豹子花属三个属的间期核和前期染色体形态相似,都属于复杂中央微粒型,前期染色体属于中间型,分裂中期体 细胞染色体分别为Lilium  henricii Franch,2n=24=2m(2SAT)+2sm+10st+10t,核型不对称性属于3A型;Lilium bakerianum Coll.et  Hesml.var.  rubrum  Stearn,    2n=24=4m  (2SAT)+10st+10t(2SAT),核型不对称性属于3A型;Nomocharis bilouensis Liang 2n=24=2m(2SAT)+2sm+12st+8t,核型不对称性属于3A型;Nomocharis pardanthina Franch.,2n=24=4m(2SAT)+12st (2SAT)+8t,核型不对称性属于3A型;Nomocharis sauluensis Balf, f.,2n=24=4m(2SAT)+10st(2SAT)+10t,核型不对称性属于3B型;Notholirion campanulatum Cotton et Stearn2n=24=2m(2SAT)+2sm+14st(2SAT)+6t,核型不对称性属于3A型。  相似文献   

2.
本文研究了四川黄精属Polygonatum 8个种的染色体数目和结构,玉竹n=10,   2n=20=4st十6sm十10m;  多花黄精2n=20=6sm十14m;  点花黄精n=16,2n=   32=2t十8st+2sm十20m;滇黄精n=13,2n=26=8st (2SAT)+14sm+4m;互卷黄   精2n=32=6st+8sm+18m (2SAT);  湖北黄精n=15,  2n=30=2t+6st十6sm+   16m(2SAT);黄精2n=24=2t十14st(2SAT)+6sm十2m;卷叶黄精n=28,2n=56=   18st+10sm十28m。     黄精属植物染色体数目和结构的变异类型多样,8种黄精的核型可以区分为3种类型:2   B、3B、2C。核型不对称性的加强与染色体数目的递增有相关性。本文就染色体方面的资料对  前人关于该属分类群的亲缘关系的论述进行了讨论。  相似文献   

3.
黄精属5种植物的核型研究   总被引:2,自引:0,他引:2  
 本文报道了安徽省黄精属Polygonatum Mill.5种植物的染色体数目和核型。玉竹P. odoratum (Mill.)Druce黄山材料2n=16=10m(3sc)+6sm,滁县琅琊山材料2n=18=10m(1sc) +2sm+6st(2sc),二者均属2B核型. 长梗黄精P.filipes Mirr. 黄山材料2n=22=8m+8sm(2sc)+6st,属3B核型,安徽繁昌材料2n=14=10m+4sm和2n=16=8m +4sm+4st,二者均属2B核型。多花黄精(P.cyrtonema Hua)安徽黄山材料2n=20=8m+6sm+6st和2n=22=6m+8sm +4st+4t,二者均属3B核型,安徽滁县琅琊山材料2n=18=8m(2sc)+6sm+4st,属2B核型。长苞黄精(P.desoulayi kom.) 2n=22=10m(2sc)+6sm(1sc)+6st,属3B核型;轮叶黄精(P.verticillatum(L.)All.)2n=18=2m+2sm+10st+2t+2T和2n=24=6m+4sm+12st+2T,二者均属3B核型。其中玉竹2n=16,长梗黄精2n=14和2n=22,长苞黄精2n=22,轮叶黄精2n=18的染色体数目和核型均为首次报道。  相似文献   

4.
本文首次报道和分析了阿魏属Ferula L.分布区东缘3个种的染色体数目和核型。 太行阿魏F. licentiana Hand.-Mazz.的核型公式为2n=22=14m+2sm+6st(2sat),铜山阿魏F.licentianc Hand.-Mazz.var.tunshanica(Su)Shan et Q.X.Liu的核型公式为2n=22=14m+8st(2sat), 硬阿魏F.bungeana Kitag.的核型公式为2n=22=12m+6sm+2st。  它们的核型都属2A型.在此基 础上从染色体角度进一步论证了铜山阿魏作为太行阿魏的变种和硬阿魏从近前胡亚属  Subgen. Peucedanoides(Boiss.)Korov.中分出的合理性.根据已有资料,提出该属的染色体基数为X=11, 基本核型公式为2n=22=14m+4sm+4st。  本属核型对称性偏高,核型变异性偏小,与该属的自然性和稳 定性以及该属的分类地位的合理性和可靠性相吻合。  本文还分析了国产阿魏属内各种类的核型,进化程度,并对它们进行了细胞分类处理,对于出现与经典分类不一致的原因进行了讨论。  相似文献   

5.
本文报道了国产头蕊兰属植物银兰和金兰的核型:  (1)银兰为  2n=34=10m十   14sm+10st。金兰有两种细胞型,A型为2n=34=8m+16sm十10st;B型为2n=34=   8m+22sm十4st。  后者为一个由染色体结构变异所产生的易位同型纯合子  (translocation   homozygote),是由A型通过第1对染色体的短臂与第3对染色体的长臂之间的易位所产生。   在植株外部形态上未见明显差异。  (2)按Stebbins(1971)的标准,三种核型均属不对称的  “3C”型。  相似文献   

6.
报道了在中国广西发现的苦苣苔科一新属即方鼎苣苔属Paralagarosolen Y. G. Wei 和一新种方鼎苣苔P. fangianum Y. G. Wei。方鼎苣苔属与细筒苣苔属Lagarosolen W. T. Wang近缘,它们的共同特征是花筒细筒状,不肿胀,柱头2;不同点是方鼎苣苔属叶基部有时盾状,聚伞花序具1朵花,花冠裂片顶端圆钝,蒴果宽卵状椭圆球形。  相似文献   

7.
描述了在广西发现的苦苣苔科一新属和一新种,即文采苣苔属Wentsaiboea D. Fang & D. H. Qin及文采苣苔W. renifolia D. Fang & D. H. Qin, 并提供墨线图。文采苣苔属的柱头外形略似长檐苣苔属Dolicholoma D. Fang & W. T. Wang, 不同在于前者叶肾形,基部心形,具掌状脉,花冠斜钟状,裂片圆形,雄蕊和退化雄蕊着生于冠筒近基部。新属在体态上还接近小花苣苔属Chiritopsis W. T. Wang, 但前者叶具掌状脉,冠筒钟状,远轴侧膨胀,柱头马蹄形;在后者叶具羽状脉,冠筒筒状,不膨胀,柱头下唇倒梯形至线形。  相似文献   

8.
 本文对国产葱属根茎组的8种植物进行了染色体研究,发现染色体数目2n=16或32,核型属2A 或2B型,对称性较高。其染色体数目和核型分别为:Allium leucocephalum 2n(2x)=16=12m+2sm +2st(2SAT); A,strictum 2n(4x)=32=16m+4sm+12st;A.ramosum 2n(2x)=16=14m+2st (2SAT); A.bidentatum 2n(4x)=32=24m+4sm+4T;A.tenuissimum 2n(2x)=16=10m+4sm+ 2st(2SAT),A.anisopodium 2n(2x)=16=12m+2sm+2st(2SAT);A.anisopodium var.zimmermanni anum 2n(4x)=32=24m+4sm+4st(4SAT); A.condensatum 2n(2x)=16=14m+2st(2SAT)。多数种的染色体资料为国内首次报道。  相似文献   

9.
报道了在广西发现的苦苣苔科异裂苣苔属一新变种,即粉绿异裂苣苔Pseudochirita guangxiensis (S. Z. Huang) W. T. Wang var. glauca Y. G. Wei & Yan Liu。它与原变种的区别在于叶近全缘或有不明显的钝锯齿,茎和叶背、叶面密被近贴伏的绒毛,花冠外疏被腺毛。  相似文献   

10.
 对我国木兰科Magnoliaceae含笑属Michelia 12个种的核型进行了研究,核型公式如下:火力楠 M.macclurei var.sublanea 2n=34m(2SAT)+4sm;白兰M.alba 2n=34m+4sm;多花含笑M.flori- bunda 2n=30m+8sm;黄兰M.champaca 2n=32m+6sm;石碌含笑M.shiluensis 2n=32m+6sm;阔 瓣含笑M . platypetala 2n=32m+6sm(2SAT);含笑M.figo 2n=32m+6sm;深山含笑M.maudiae 2n=32m+6sm;长蕊含笑M.  longistamina 2n=32m=6sm;金叶含笑M.foveolata 2n=34m=4sm; 野含笑M.skineriana 2n=30m+8sm;峨嵋含笑M.wilsonii 2n=30m+8sm(2SAT)。该属核型全部为 对称核型,除多花含笑为1A类型外,其他均为2A核型。含笑属种间核型具有很大相似性,核型资料对该属属以下的分类帮助不大。     相似文献   

11.
 本文报道了我国黑龙江产桔梗科沙参属的10种1变种的染色体数目和核型,对其中     7种作了减数分裂行为的观察。  其中6种1变种为首次报道,并发现2n=68的4x种。该     属染色体基数多为17(x=17),但Adenophora trachelioides和A.remotiflora的基数为18     (x=18),为该属独特基数。核型的共同特征是:小型,以中部(m)、近中部(sm)着丝点     染色体为主,至少具一对近端着丝点染色体和一对随体染色体。该属染色体的演化处于二种     水平:  数目变化(包括多倍化和非整倍体变化)和结构变异。  多倍化是该属物种形成的主要     途径之一。结合其它性状讨论了这些种的分类,并确立1个四倍体新种(A. amurica)和1个新组合(A.pereskiifolia ssp.alternifolia)。  相似文献   

12.
本文测定了苦苣苔亚科4族、5属、5种植物的核糖体DNA中的内转录间隔区(ITS)序列及5.8s rRNA基因的3′端序列。这几种苦苣苔亚科植物的ITS-1的长度范围为234~258 bp,ITS-2的长度范 围为218~246bp。Whytockia bijieensis的ITS-1(258bP)和ITS-2(218 bp)在长度、序列及GC含量上 均与其它几个种有较大差异,其代表的尖舌苣苔族可能很早就自苦苣苔亚科的祖先沿单独的一个分支 演化。以w.bijieensis作为功能性外类群,运用PAUP软件分析仅得到一个最简约树。在简约树上, Cyrtandra umbelliferm、Briggsia longipes和Anna mollifolia形成一个单系群,bootstrap分析对该分支的 支持强度达97%,Chirita crasslfolia位于该分支的基部。由于系统树上Cyrtandra umbellifera代表的 浆果苣苔族和Anna mollifolid代表的芒毛苣苔族均起源于长蒴苣苔族,结合这3个族在形态上存在过渡系列,建议将浆果苣苔族和芒毛苣苔族均并入长蒴苣苔族。  相似文献   

13.
独叶草花粉形态的研究及其在分类上的意义   总被引:1,自引:0,他引:1  
 独叶草  (Kingdonia uniflora Balfour f.et W.W.Smith)  为我国特有植物,     由于它的开放的二叉分枝叶脉,引起了植物学家的很大兴趣和广泛注意,并从     各个方面对它进行了研究。关于它的花粉形态,除Forster(1961)曾有过简短     描述外,国内外都未研究过。本文对它的花粉形态进行了系统的研究,通过光学     显微镜、扫描电镜和透射电镜观察了它的外部形态和外壁结构。  并讨论了有关    分类问题。  相似文献   

14.
本文首次报道了我国独活属10种(含1变种)的核型,其中8种的染色体数目亦为首次报道。研究表明它们的染色体数目均为2n=2x=22,为二倍体,其核型为中部着丝点和亚中部着丝点染色体组成,仅具1A和2A两种类型。有4种具随体染色体,在部分H.vicinum植株中发现有1条B染色体,在H.millefolium var.longilobum中同时存在2n=22和2n=24的非整倍体.不同种的染色体形态不同,为分类研究提供了细胞学依据。    本文在核型分析基础上讨论了该属分类群的划分、种间亲缘关系及演化,并结合我国毗邻地区该属细胞学资料和地理分布规律,提出我国西南部的横断山区是独活属的频度中心和多样性中心。  相似文献   

15.
 We have described a new genus Taihangia, collected from, the south part of Taihang Mountain in northern China. At the same time, comparative studies on Taihangia with its related genera have been made in various fields including external morphology, anatomy of carpels, chromosome and pollen morphology by light, scanning and transmission electron microscope. In addition, isoperoxidases of two varietier were analysed by means of polya-crylamide gel slab electrophoresis. The preliminary results are as follows:       Morphology: The genus Taihangia is perennial and has simple leaves, occasionally with 1—2 very small reduced lobes on the upper part of petiole; flowers white, andromo- noecious and androdioecious, terminal, single or rarely 2 on a leafless scape; calyx and cpicalyx with 5 segments; petals 5; stamens numerous; pistils numerous, with pubescent styles, spirally inserted on the receptacle in bisexual flowers, but with less number of abortive and glabrous pistils in male flowers.       In comparison with the related genera such as Dryas, Geum, Coluria and Waldsteinia, the new genus has unisexual flowers and always herbaceous habit indicating its advanced feature but the genus has a primitive style with thin and short hairs as compared with the genus Dryas which has long, pinnately haired styles, a character greatly facilitamg anemo-choric dissemination. The styles of Taihangia are slender and differ from those of the ge-nus Geum which are articulate, with a persistent hooked rostrum, thus adapting to epizo-ochoric dissemination to a higher degree.       The anatomy of carpels shows the baral position of ovules in the genus Taihangia like those in other related genera such as Dryas, Geum, Acomastylis, Coluria and Waldsteinia. This suggests that the new genus and its related ones are in a common evolutionary line as compared with the other tribes which have a pendulous ovule and represent a separate evolutionary line in Rosaceae. Dorsal and ventral bundles in carpels through sections are free at the base. Neither fusion, nor reduction of dorsals and vertrals. are observed. This shows that the genus Taihangia is rather primitive.       Somatic chromosome: All the living plants, collected from both Honan and Hopei Provinces were examined. The results show that in these plants the chromosome number is 2n= 14, and thus the basic number of chromosome is x=7. Such a diploid genus is first found in both anemochoric and epizoochoric genera. Therefore, in this respect Taihangia is primitive as compared with herbaceous polyploid genus Geum and related ones.      Pollen: The stereostructure shown by scanning electron microscope reveals  that  the pollen grains of the genus Taihangia are ellipsoid and 3-colporate. There are two types of exine sculpture. One is rather shortly striate and it seems rugulate over the pollen surface; the other is long-striate. The genus Dryas differs in having only short and thick striae over the surface. The genus is similar to the genera Geum, Coluria and Waldsteinia in colpustype, but differs from them in that they all have long, parallel striae which are distributed along the meridional line.       In addition, under transmission electron microscope, the exine in the Taihangia and related genera Acomastylis, Geum, Coluria, Waldsteinia and Dryas has been shown to be typically differentiated into two distinct layers, nexine and sexine. The nexine, weakly statined, appears to consist of endoxine with no foot-layer, in which the columellae are fused, and which is thicker beneath the apertures. The sexine is 2-layered, consisting of columellae and tectum. Three patterns of tectum can be distinguished in the tribe Dryadeae: the first, in the genera Taihangia, Acomastylis, Geum, Coluria and Waldsteinia, is tectate-imperforate, with the sculpturing elements both acute and obtuse at the top and broad at the base; the second, in the genus Dryas, is semitectate, with the sculpturing elements shown in ultrathin sections rod-like and broader at the top than at the base or as broad at the top as at the base, and the third, tectate-perforate, with the sculpturing elements different in size. From the above results, the herbaceous groups and woody ones  have palynologically evolved in two distinct directions, and the genus Taihangia is related to other herbaceous genera such as Acomastylis, Geum, Coluria and Waldsteinia, as shown in the electron microphotographs of ultrathin sections. The genus Taihangia, however, is different from related herbaceous genera in that the pollen of Taihangia is dimorphic, i.e. in addition to the above pattern of pollen another one of the exine in Taihangia is rugulate, with the sculpturing elements shown in the ultrathin sections being obtuse or emarginate and nearly as broad at the top as at the base.      The interesting results obtained from the comparative analysis of morphology, ana- tomy of carpels, chromosome countings, microscopic and submicrosocopic structures of pollen may enable us to evaluate the systematic position of Taihangia and to throw a new light on evolution of the tribe Dryadeae. It is well known that the modes of dissemination of rosaceous fruits play an important role in the expansion and evolution of the family. The follicle is the most primitive and the plants with follicles, like the Spiraeoideae, are mostly woody and mesic, while the achene, drupe and pyrenarium are derived. In Rosoideae  having a achene is a common feature. Particularly in the tribe Dryadeae, which is distinguished from the other related tribes by having orthotropous ovules, the methods of dissemination of fruits have developed in three distinct specialized directions: anemochory with long, plumose styles (e.g. Dryas), formicochory or dispersed by ants or other insects, with the deciduous styles (e.g. Waldsteinia and Collria),and epizoochory with the upper deciduous stigmatic part and the lower persistent hooked rostrum, an  adhesive organ favouring  epizoochory dissemination (e. g. Geum and related taxa). Taihangia is a genus endemic to mesophytic forest area of northern China. Due to its narrow range and specific habit as well as pubescent styles, neither perfectly adapted to anemochory nor to epizoochory, the genus  Taihangia might be a direct progeny of the ancestry of anemochory. Maintaining the diploidy and having an ntermediate sculptural type of pollen, the new genus might probably represent a linkage between anemochory and zoochory (including epizoochory and dispersed by ants).       Experimental evidence from isoperoxidases shows the stable zymograms of root and roostoks. The anodal isozyme of T. rupestris var. rupestris may be divided into 6 bands: A, B, C, D, E, F, and T. rupestris var. ciliata into 4 bands: A, B, C, G. The two varietiesof the species share 3 bands: A, B, C. However, D, E and F bands are characteristic of var. rupestris and G band is limited to var. ciliata. As far as the available materials are concerned, the analysis of isoperoxidases supports the subdivision of the species into two varieties.  相似文献   

16.
石蒜属的核型研究   总被引:3,自引:0,他引:3  
本文对石蒜属Lycoris的12个种(包括亚种)和2个人工杂种进行了核型分析。 结果表明,石蒜属植物在染色体数目和核型上存在着较大的变异,而罗伯逊变化、杂交与多倍化是引起染色体变异的主要原因。  相似文献   

17.
In the work mitotic chromosomes in root-tips of 7 species native to Sichuan Pro- vince were examined and their karyotypes were analysed based on 7-8 cells at mitotic meta- phase, using Levan et al.'s (1964) nomenclature. The list of species and origin of the materials used in this work are provided in the appendix.  The micrographs of mitotic metaphase of all the materials are shown in Plates 1 and 2; the idiograms in Fig. 1, 1-9, and the parameters of chromosomes are provided in Tables 1-9.  All the chromosome countings and karyotypes in this paper are reported for the first time.      Characteristics of the karyotypes may be summarized as follows:      1.  2n=38 are found in all the materials except A. sichuanensis, which has 3 cytotypes, i.e, 2n=38+5B, 2n=38+lB and 2n=38+OB (Plate 2, 1-2, Fig. 1, 5-6).      2.  The karyotypes are of two major types: the karyotype of A. flaviflora falls into 3C in Stebbins's (1958, 197l) classification of karyotypes and those of all the other species into 2C. The two types are also different from each other in the number of large and medium-sized chromosomes pairs and morphology of the first pair of chromosomes (compare Plate 2, 5, Fig. 1, 9 with the other micrographs and idiograms).A. flaviflora with the karyotype 3C also differs from the other species in a series of gross morphological characters: the species is of a yellow and campanulate corolla.      3.  The species with caespitose leaves (A. caespitosa and A. omeiensis) have essentially the same karyotype, which is rather different from those of the species with scattered leaves. There are two pairs of small sm chromosomes (arm ratio ≥1.90) in the former karyotype (Tables 1 and 3), but all the small chromosomes are m or sm with arm ratio <1.80 in the latter karyotypes.  相似文献   

18.
 首次记载了毛冠菊属2种4居群的核形态资料。两种植物的染色体间期和前期染色体为复杂型 和中间型。狭舌毛冠菊两居群的染色体数目与核型公式为2n=18=14m+2sm+2st(2SAT);毛冠菊两居  群的染色体数目与核型公式为2n=18=14m+2sm(2SAT)+2st。它们分别代表了整个毛冠菊属的两组  植物,并包含了形态学上最原始的种类,因此,该属的染色体基数可能为x=9。核形态证据表明毛冠菊属放在紫菀族比放在旋覆花族和千里光族中更为合理。  相似文献   

19.
  A karyotypical analysis of Anemarrhena asphodeloides Bung. of the monotypic genus Anemarrhena Bung. (Liliaceae) was carried out for the first time. The number of chromo- somes in root-tip cell of the species was found to be 22, agreeing with that reported by Sato[12], although inconsistent in some other respects, such as position of  centromeres, length of chromosomes, and nucleoli, etc. (Table 1 ). According to the terminology defined by Levan et al.[8], the karyotype formula is therefore 2n=22=2sm (SAT)+2sm+18m. Photomicrographs of the chromosome complements and idiogram of the karyotype are given   Fig. 1 and 2).       The karyotype of Anemarrhena asphodeloides shows explicitly to be asymmetrical, with three pairs of long chromosomes and eight pairs of short chromosomes. This specialized feature, when considered together with the rare occurrence of the basic chromosome number of 11 of the genus within the Tribe Asphodeleae of Liliaceae (see Table 1), suggests that the genus Anemarrhena is probably a rather specialized one, which has scarcely any intimate relationship with the other genera of the above tribe. The fact that this specialized karyotype is associated with certain trends of morphological specialization, such as flowers possessing three stamens only, gives support to the above suggestion. But, it is impossible to draw a more precise conclusion without a more thorough and comprehensive investigation of the species in question.  相似文献   

20.
本文报道了中国苹果属Malus Mill.21种36类型的核型和6个多倍体类型的减数分裂联会构 型。 (木+多)(木+衣)海棠组Sect.Docyniopsis和花楸苹果组Sect.Sorbomalus中的滇池海棠系Ser. Yunnanenses  属2A型,陇东海棠系Ser.Kansuenses中的变叶海棠M.toringoides和花叶海棠M. transitoria属2A、2B则,三叶海棠系Ser.Sieboldianae属2B型,苹果组Sect.Malus中的苹果系 Ser.Pumilae和山荆子系Ser.Baccatae除小金海棠M.xiaojinensis 2B型外,均属3B型。减数分 裂观察结果有同源四倍体,节段异源三倍体和异源三倍体类型。本文还讨论了种类间在核型上的差异、栽培种的起源,核型的演化趋势以及无融合生殖类型的分类学处理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号