首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The literature provides confounding information with regard to questions about whether students in high school can engage in meaningful argumentation about socio‐scientific issues and whether this process improves their conceptual understanding of science. The purpose of this research was to explore the impact of classroom‐based argumentation on high school students' argumentation skills, informal reasoning, and conceptual understanding of genetics. The research was conducted as a case study in one school with an embedded quasi‐experimental design with two Grade 10 classes (n = 46) forming the argumentation group and two Grade 10 classes (n = 46) forming the comparison group. The teacher of the argumentation group participated in professional learning and explicitly taught argumentation skills to the students in his classes during one, 50‐minute lesson and involved them in whole‐class argumentation about socio‐scientific issues in a further two lessons. Data were generated through a detailed, written pre‐ and post‐instruction student survey. The findings showed that the argumentation group, but not the comparison group, improved significantly in the complexity and quality of their arguments and gave more explanations showing rational informal reasoning. Both groups improved significantly in their genetics understanding, but the improvement of the argumentation group was significantly better than the comparison group. The importance of the findings are that after only a short intervention of three lessons, improvements in the structure and complexity of students' arguments, the degree of rational informal reasoning, and students' conceptual understanding of science can occur. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 952–977, 2010  相似文献   

2.
The purpose of this study was to investigate the effects of the Common Knowledge Construction Model (CKCM) lesson sequence, an intervention based both in conceptual change theory and in Phenomenography, a subset of conceptual change theory. A mixed approach was used to investigate whether this model had a significant effect on 7th grade students' science achievement and conceptual change. The Excretion Unit Achievement Test (EUAT) indicated that students (N = 33) in the experimental group achieved significantly higher scores (p < 0.001) than students in the control group (N = 35) taught by traditional teaching methods. Qualitative analysis of students' pre‐ and post‐teaching conceptions of excretion revealed (1) the addition and deletion of ideas from pre‐ to post‐teaching; (2) the change in the number of students within categories of ideas; (3) the replacement of everyday language with scientific labels; and (4) the difference in the complexity of students' responses from pre‐ to post‐teaching. These findings contribute to the literature on teaching that incorporates students' conceptions and conceptual change. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47: 25–46, 2010  相似文献   

3.
The purpose of this mixed‐method study was to investigate the changes in high school students' perceptions of fluency with innovative technologies (IT) and the levels of students' scientific inquiry abilities as a result of engaging students in long‐term scientific research projects focusing on community‐based environmental issues. Over a span of 3 years, a total of 125 ninth‐ through twelfth‐grade students participated in this study. A project‐specific Likert‐scale survey consisting of three parts (fluency with All Technologies, GPS/GIS, and CBL2/EasyData) was administered to all students as a pre‐ and post‐test. At the end of the study, 45 students were randomly interviewed and asked to elaborate on the changes in their perceptions of fluency with IT. The results indicated statistically significant increases (p < 0.001) in students' perceptions of their fluency with IT. Qualitative analysis of students' interview results corroborated the statistical findings of students' changes in perceptions of their fluency with IT. Students' research papers based on the environmental studies conducted at the interface of classroom and community were analyzed using the Scientific Inquiry Rubrics, which consist of 11 criteria developed by the researchers. Results indicated the students' abilities to conduct scientific inquiry for 7 out of 11 criteria were at the proficient level. This study clearly points to the correlation between the development of IT fluency and ability levels to engage in scientific inquiry based on respective competencies. Ultimately, this research study recommends that students' IT fluency ought to be developed and assessed concurrently with an emphasis on contemporary higher order scientific inquiry abilities. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 48: 94–116, 2011  相似文献   

4.
This study examined 10th‐grade students' use of theory and evidence in evaluating a socio‐scientific issue: the use of underground water, after students had received a Science, Technology and Society‐oriented instruction. Forty‐five male and 45 female students from two intact, single‐sex, classes participated in this study. A flow‐map method was used to assess the participants' conceptual knowledge. The reasoning mode was assessed using a questionnaire with open‐ended questions. Results showed that, although some weak to moderate associations were found between conceptual organization in memory and reasoning modes, the students' ability to incorporate theory and evidence was in general inadequate. It was also found that students' reasoning modes were consistent with their epistemological perspectives. Moreover, male and female students appear to have different reasoning approaches.  相似文献   

5.
The case‐based computerized laboratory (CCL) is a chemistry learning environment that integrates computerized experiments with emphasis on scientific inquiry and comprehension of case studies. The research objective was to investigate chemical understanding and graphing skills of high school honors students via bidirectional visual and textual representations in the CCL learning environment. The research population of our 3‐year study consisted of 857 chemistry 12th grade honors students from a variety of high schools in Israel. Pre‐ and postcase‐based questionnaires were used to assess students' graphing and chemical understanding–retention skills. We found that students in the CCL learning environment significantly improved their graphing skills and chemical understanding–retention in the post‐ with respect to the prequestionnaires. Comparing the experimental students to their non‐CCL control peers has shown that CCL students had an advantage in graphing skills. The CCL contribution was most noticeable for experimental students of relatively low academic level who benefit the most from the combination of visual and textual representations. Our findings emphasize the educational value of combining the case‐based method with computerized laboratories for enhancing students' chemistry understanding and graphing skills, and for developing their ability to bidirectionally transfer between textual and visual representations. © 2008 Wiley Periodicals, Inc. J Res Sci Teach 45: 219–250, 2008.  相似文献   

6.
This study reports an adaptive digital learning project, Scientific Concept Construction and Reconstruction (SCCR), and examines its effects on 108 8th grade students' scientific reasoning and conceptual change through mixed methods. A one‐group pre‐, post‐, and retention quasi‐experimental design was used in the study. All students received tests for Atomic Achievement, Scientific Reasoning, and Atomic Dependent Reasoning before, 1 week after, and 8 weeks after learning. A total of 18 students, six from each class, were each interviewed for 1 hour before, immediately after, and 2 months after learning. A flow map was used to provide a sequential representation of the flow of students' scientific narrative elicited from the interviews, and to further analyze the level of scientific reasoning and conceptual change. Results show students' concepts of atoms, scientific reasoning, and conceptual change made progress, which is consistent with the interviewing results regarding the level of scientific reasoning and quantity of conceptual change. This study demonstrated that students' conceptual change and scientific reasoning could be improved through the SCCR learning project. Moreover, regression results indicated students' scientific reasoning contributed more to their conceptual change than to the concepts students held immediately after learning. It implies that scientific reasoning was pivotal for conceptual change and prompted students to make associations among new mental sets and existing hierarchical structure‐based memory. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47: 91–119, 2010  相似文献   

7.
Although research from a developmental/psychological perspective indicates that many children do not have a scientific understanding of living things, even by the age of 10 years, little research has been conducted about how students learn this science topic in the classroom. This exploratory research used a case‐study design and qualitative data‐collection methods to investigate the process of conceptual change from ontological and social perspectives when Year 1 (5‐ and 6‐year‐old) students were learning about living things. Most students were found to think about living things with either stable, nonscientific or stable, scientific framework theories. Transitional phases of understanding also were identified. Patterns of conceptual change observed over the 5‐week period of instruction included theory change and belief revision as well as reversals in beliefs. The predominant pattern of learning, however, was the assimilation of facts and information into the students' preferred framework theory. The social milieu of the classroom context exposed students' scientific and nonscientific beliefs that influenced other individuals in a piecemeal fashion. Children with nonscientific theories of living things were identified as being least able to benefit from socially constructed, scientific knowledge; hence, recommendations are made for teaching that focuses on conceptual change strategies rather than knowledge enrichment. © 2004 Wiley Periodicals, Inc. J Res Sci Teach 41: 449–480, 2004  相似文献   

8.
9.
This research investigated the effect of reflective discussions following inquiry‐based laboratory activities on students' views of the tentative, empirical, subjective, and social aspects of nature of science (NOS). Thirty‐eight grade six students from a Lebanese school participated in the study. The study used a pretest–posttest control‐group design and focused on collecting mainly qualitative data. During each laboratory session, students worked in groups of two. Later, experimental group students answered open‐ended questions about NOS then engaged in reflective discussions about NOS. Control group students answered open‐ended questions about the content of the laboratory activities then participated in discussions of results of these activities. Data sources included an open‐ended questionnaire used as pre‐ and posttest, answers to the open‐ended questions that experimental group students answered individually during every session, transcribed videotapes of the reflective discussions of the experimental group, and semi‐structured interviews. Results indicated that explicit and reflective discussions following inquiry‐based laboratory activities enhanced students' views of the target NOS aspects more than implicit inquiry‐based instruction. Moreover, implicit inquiry‐based instruction did not substantially enhance the students' target NOS views. This study also identified five major challenges that students faced in their attempts to change their NOS views. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 1229–1252, 2010  相似文献   

10.
The process of students' conceptual change was investigated during a computer‐supported physics unit in a Grade 10 science class. Computer simulation programs were developed to confront students' alternative conceptions in mechanics. A conceptual test was administered as a pre‐, post‐, and delayed posttest to determine students' conceptual change. Students worked collaboratively in pairs on the programs carrying out predict–observe–explain tasks according to worksheets. While the pairs worked on the tasks, their conversational interactions were recorded. A range of other data was collected at various junctures during instruction. At each juncture, the data for each of 12 students were analyzed to provide a conceptual snapshot at that juncture. All the conceptual snapshots together provided a delineation of the students' conceptual development. It was found that many students vacillated between alternative and scientific conceptions from one context to another during instruction, i.e., their conceptual change was context dependent and unstable. The few students who achieved context independent and stable conceptual change appeared to be able to perceive the commonalities and accept the generality of scientific conceptions across contexts. These findings led to a pattern of conceptual change which has implications for instructional practices. The article concludes with consequent implications for classsrooms. © 1999 John Wiley & Sons, Inc. J Res Sci Teach 36: 859–882, 1999  相似文献   

11.
In this study, we analyzed the quality of students' written scientific explanations found in notebooks and explored the link between the quality of the explanations and students' learning. We propose an approach to systematically analyzing and scoring the quality of students' explanations based on three components: claim, evidence to support it, and a reasoning that justifies the link between the claim and the evidence. We collected students' science notebooks from eight science inquiry‐based middle‐school classrooms in five states. All classrooms implemented the same scientific‐inquiry based curriculum. The study focuses on one of the implemented investigations and the students' explanations that resulted from it. Nine students' notebooks were selected within each classroom. Therefore, a total of 72 students' notebooks were analyzed and scored using the proposed approach. Quality of students' explanations was linked with students' performance in different types of assessments administered as the end‐of‐unit test: multiple‐choice test, predict‐observe‐explain, performance assessment, and a short open‐ended question. Results indicated that: (a) Students' written explanations can be reliably scored with the proposed approach. (b) Constructing explanations were not widely implemented in the classrooms studied despite its significance in the context of inquiry‐based science instruction. (c) Overall, a low percentage of students (18%) provided explanations with the three expected components. The majority of the sample (40%) provided only claims without any supporting data or reasoning. And (d) the magnitude of the correlations between students' quality of explanations and their performance, were all positive but varied in magnitude according to the type of assessment. We concluded that engaging students in the construction of high quality explanations may be related to higher levels of student performance. The opportunities to construct explanations in science‐inquiry based classrooms, however, seem to be limited. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 583–608, 2010  相似文献   

12.
Inquiry instruction often neglects graphing. It gives students few opportunities to develop the knowledge and skills necessary to take advantage of graphs, and which are called for by current science education standards. Yet, it is not well known how to support graphing skills, particularly within middle school science inquiry contexts. Using qualitative graphs is a promising, but underexplored approach. In contrast to quantitative graphs, which can lead students to focus too narrowly on the mechanics of plotting points, qualitative graphs can encourage students to relate graphical representations to their conceptual meaning. Guided by the Knowledge Integration framework, which recognizes and guides students in integrating their diverse ideas about science, we incorporated qualitative graphing activities into a seventh grade web-based inquiry unit about cell division and cancer treatment. In Study 1, we characterized the kinds of graphs students generated in terms of their integration of graphical and scientific knowledge. We also found that students (n = 30) using the unit made significant learning gains based on their pretest to post-test scores. In Study 2, we compared students' performance in two versions of the same unit: One that had students construct, and second that had them critique qualitative graphs. Results showed that both activities had distinct benefits, and improved students' (n = 117) integrated understanding of graphs and science. Specifically, critiquing graphs helped students improve their scientific explanations within the unit, while constructing graphs led students to link key science ideas within both their in-unit and post-unit explanations. We discuss the relative affordances and constraints of critique and construction activities, and observe students' common misunderstandings of graphs. In all, this study offers a critical exploration of how to design instruction that simultaneously supports students' science and graph understanding within complex inquiry contexts.  相似文献   

13.
Previous research has demonstrated the potential of examining log-file data from computer-based assessments to understand student interactions with complex inquiry tasks. Rather than solely providing information about what has been achieved or the accuracy of student responses (product data), students' log files offer additional insights into how the responses were produced (process data). In this study, we examined students' log files to detect patterns of students' interactions with computer-based assessment and to determine whether unique characteristics of these interactions emerge as distinct profiles of inquiry performance. Knowledge about the characteristics of these profiles can shed light on why some students are more successful at solving simulated inquiry tasks than others and how to support student understanding of scientific inquiry through computer-based environments. We analyzed the Norwegian PISA 2015 log-file data, science performance as well as background questionnaire (N = 1,222 students) by focusing on two inquiry tasks, which required scientific reasoning skills: coordinating the effects of multiple variables and coordinating theory and evidence. Using a mixture modeling approach, we identified three distinct profiles of students' inquiry performance: strategic, emergent, and disengaged. These profiles revealed different characteristics of students' exploration behavior, inquiry strategy, time-on-task, and item accuracy. Further analyses showed that students' assignment to these profiles varied according to their demographic characteristics (gender, socio-economic status, and language at home), attitudes (enjoyment in science, self-efficacy, and test anxiety), and science achievement. Although students' profiles on the two inquiry tasks were significantly related, we also found some variations in the proportion of students' transitions between profiles. Our study contributes to understanding how students interact with complex simulated inquiry tasks and showcases how log-file data from PISA 2015 can aid this understanding.  相似文献   

14.
The study compared the effects of dynamic geometry software and physical manipulatives on the spatial visualisation skills of first‐year pre‐service mathematics teachers. A pre‐ and post‐test quasi‐experimental design was used. The Purdue Spatial Visualisation Test (PSVT) was used for the pre‐ and post‐test. There were three treatment groups. The first group (n = 34) used Dynamic Geometry Software (DGS) Cabri 3D as a virtual manipulative and the second group (n = 32) used physical manipulatives. In the control group (n = 30), the students received traditional instruction. The results of the study showed that physical manipulatives and DGS‐based types of instruction are more effective in developing the students' spatial visualisation skills than traditional instruction. In addition, students in the DGS‐based group performed better than the physical manipulative‐based group in the views section of the PSVT.  相似文献   

15.
Reform efforts in science education emphasize the importance of supporting students' construction of knowledge through inquiry. Project‐based science (PBS) is an ambitious approach to science instruction that addresses concerns of reformers. A sample of 142 10th‐ and 11th‐grade students enrolled in a PBS program completed the 12th‐grade 1996 National Assessment of Educational Progress (NAEP) science test. Compared with subgroups identified by NAEP that most closely matched our student sample, White and middle class, PBS students outscored the national sample on 44% of NAEP test items. This study shows that students participating in a PBS curriculum were prepared for this type of testing. Educators should be encouraged to use inquiry‐based approaches such as PBS to implement reform in their schools. © 2002 Wiley Periodicals, Inc. J Res Sci Teach 39: 410–422, 2002  相似文献   

16.
Attaining the vision for science teaching and learning emphasized in the Framework for K‐12 Science Education and the next generation science standards (NGSS) will require major shifts in teaching practices in many science classrooms. As NGSS‐inspired cognitively demanding tasks begin to appear in more and more science classrooms, facilitating students' engagement in high‐level thinking as they work on these tasks will become an increasingly important instructional challenge to address. This study reports findings from a video‐based professional development effort (i.e., professional development [PD] that use video‐clips of instruction as the main artifact of practice to support teacher learning) to support teachers' learning to select cognitively demanding tasks and to support students' learning during the enactment of these tasks in ways that are aligned with the NGSS vision. Particularly, we focused on the NGSS's charge to get students to make sense of and deeply think about scientific ideas as students try to explain phenomena. Analyses of teachers' pre‐ and post‐PD instruction indicate that PD‐participants began to adopt instructional practices associated with facilitating these kinds of student thinking in their own classrooms. The study has implications for the design of video‐based professional development for science teachers who are learning to facilitate the NGSS vision in science classrooms.  相似文献   

17.
We reviewed eight studies that described learning differences between students with learning disabilities (LD) and students with mild mental retardation (MMR). A total of 639 students, 6–20 years old, participated in these studies. Study authors examined students' inductive reasoning and their performance during guided inquiry and more lengthy interventions in reading and math. Students with LD and students with MMR were assessed in terms of learning ease, pre‐ to posttreatment gains, and the maintenance, transfer, and application of knowledge acquisition. Students with LD statistically significantly outperformed students with MMR on both inductive reasoning and guided inquiry tasks. They made reliably larger gains following interventions in reading and math. Across all learning tasks and contexts, students with LD displayed greater consistency transferring and applying conceptual knowledge to new tasks. Regarding maintenance, results were mixed. Implications for categorical instruction are discussed.  相似文献   

18.
This study addresses the need for research in three areas: (1) teachers' understandings of scientific inquiry; (2) conceptual understandings of evolutionary processes; and (3) technology‐enhanced instruction using an inquiry approach. The purpose of this study was to determine in what ways The Galapagos Finches software–based materials created a context for learning and teaching about the nature of scientific knowledge and evolutionary concepts. The research used a design experiment in which researchers significantly modified a secondary science methods course. The multiple data sources included: audiotaped conversations of two focus pairs of participants as they interacted with the software; written pre‐ and posttests on concepts of natural selection of the 21 prospective teachers; written pre‐ and posttests on views of the nature of science; three e‐mail journal questions; and videotaped class discussions. Findings indicate that prospective teachers initially demonstrated alternative understandings of evolutionary concepts; there were uninformed understandings of the nature of scientific inquiry; there was little correlation between understandings and disciplines; and even the prospective teachers with research experience failed to understand the diverse methods used by scientists. Following the module there was evidence of enhanced understandings through metacognition, and the potential for interactive software to provide promising context for enhancing content understandings. © 2005 Wiley Periodicals, Inc.  相似文献   

19.
This article draws on the Millennium Cohort Study (MCS) to examine parent ratings of social, emotional and behavioural difficulties and prosocial behaviour in pre‐ and mid‐adolescents. A series of mixed‐design ANOVAs yielded interesting results. Parent ratings of emotional difficulties in girls increased as they moved from pre‐ to mid‐adolescence whereas for boys the reverse was found. Peer problems were found to be on the rise, whereas prosocial skills decreased for 14‐year‐olds. Most importantly, significant associations were found between socio‐economic measures (that is, family income and parent education) and ratings across the domains of the Strengths and Difficulties Questionnaire, highlighting the socio‐economic specificity of behaviour and well‐being in adolescents. These findings have significant implications for understanding trends in young people's social behaviour and emotional well‐being from pre‐ to mid‐adolescence within their socio‐economic context.  相似文献   

20.
A 20-week classroom-based study was conducted to investigate the extent to which a computerized learning environment could facilitate students' development of higher-level thinking skills associated with scientific inquiry. In two classes students' interactions with a scientific data base—Birds of Antarctica—were closely monitored, and the mediating roles of the teachers' epistemologies were examined. Interpretive data were generated and analyzed in relation to a constructivist perspective on learning. In the class where the teacher implemented a constructivist-oriented pedagogy, students took advantage of enhanced opportunities to generate creative questions and conduct complex scientific investigations. These higher-level thinking skills were much less evident in the class in which a more transmissionist-oriented pedagogy prevailed. The results of the study suggest that it is not the computer itself that facilitates inquiry learning; the teacher's epistemology is a key mediating influence on students' use of the computer as a tool of scientific inquiry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号