首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文[1]证明了一个不等武:0≤x,y,x_1,y_1≤1,x x_1=1,y y_1=1,则L_2=(x~2 y~2)~(1/2) (x~2_1 y~2)~(1/2) (x~2 y~2_1)~(1/2) (x~2_1 y~2_1)~(1/2)≤2 2~(1/2),并根据L_2的几何意义提出了猜想.设0≤z,y,z,x_1,y_1,z_1≤1,x x_1=1,y y_1=1,z z_1=1,则L_3=(x~2 y~2 z~2)~(1/2) (x~2_1 y~2 z~2)~(1/2) (x~2_1 y~2_1 z~2)~(1/2) (x~2 y~2_1 z~2)~(1/2) (x~2 y~2 z~2_1)~(1/2) (x~2_1 y~2 z~2_1)~(1/2) (x~2 y~2_1 z~2_1)~(1/2)  相似文献   

2.
定理 设x,y,z∈R,且x y z=0,则对任意的n∈N,恒有2~(n 1)(x~(2n) y~(2n) z~(2n))≥(x~2 y~2 z~2)~n (1)  相似文献   

3.
第31届IMO有一道预选题为: 已知:x≥y≥z>0,x,y,z∈R。求证: x~2y/z y~2z/x z~2x/y≥x~2 y~2 z~2。 (1) 本文给出它的推广及证明。  相似文献   

4.
题目确定方程组{x+y+z=3;①x~2+y~2+z~2=3 ②x~3+y~3+z~3=3 ③的整数解. 解由①,得x+y=3-z,④由②,得(x+y)~2-2xy+z~2=3 ③  相似文献   

5.
设x,y,Z∈R~ ,求证: (x~2 y~2 xy)~(1/2) (y~2 z~2 yz)~(1/2) (z~2 x~2 zx)~(1/2)≥3~(1/2)(x y z)。 这个不等式在较多地方已给出不同的证法。这里,再给出一种构造几何图形证明的方法,并加以推广及一般化。 证明 这个不等式中等号成立的充要条件是x=y=z,这是显然的。下面就讨论z,y,x不全相等的情形。如图1,∠AOA′=120°,OA=OA′,CC′∥BB′∥AA′。因此OB=OB′,OC=OC′。  相似文献   

6.
正第49届国际数学奥林匹克数学竞赛第2题是:设实数x,y,z都不等于1,满足xyz=1,则x~2/(1-x)~2+y~2/(1-y)~2+z~2/(1-z)~2≥1.本文给出上述不等式的一个类比:命题1设实数x,y,z都不等于-1,且xyz=1,则x~2/(1+x)~2+y~2/(1+y)~2+z~2/(1+z)~2≥3/4.  相似文献   

7.
设x、y、z是三个正整数,如果x~2+y~2=z~2,(1)则它们称做勾股数,也称毕达哥拉斯三元数组(Pythagorean Triples).当x,y,z满足(1)时,x或y必为偶数,否则有z~2=x~2+y~2≡2(mod4),这是不可能的. 如果勾股数x,y,z互素,就说是本原  相似文献   

8.
本刊文[1]对方程组x y z=3 (1)x~2 y~2 z~2=3 (2)x~5 y~5 z~5=3 (3)(1973年美国奥林匹克竞赛题)给出一种简便解法.今再用代数代换给出其它简便解法.解法1 因为对三元方程 x y z=3右端等于  相似文献   

9.
如果正整数a、b、c、d满足关系a~2+b~2+c~2=d~2,则a、b、c、d可分别作为长方体的长、宽、高和对角线。于是,我们说a、b、c、d是一组长方体数。长方体数可看作是勾股数的三维推广,从这一点就可说明长方体数在立体几何数学中,在第二课堂教学中均具有参考价值。长方体数是不定方程x~2+y~2+z~2=w~2的正整数解。因此,本文从讨论不定方程x~2+y~2+z~2=w~2的正整数解出发推导构造长方体数的两个法则。因不定方程x~2+y~2+z~2=w~2有正整数解。可先假定(x,y,z)=1。因当(x,y,z)=d_0>1时,由d_0~1|x~2,d_0~2|y~2,d_0~2|z~2有d_0~2|w~2,即有d_0~2|w,此时不定方程两边可同时约去d_0,便有(x/d~0,y/d_0,z/d_0)=1。当(x,y,z)=1时,显然x、y、z不可能同时为  相似文献   

10.
第46届国际数学奥林匹克第3题是:设x,y,z 为正数且 xyz≥1,求证:(x~5 x~2)/(x~5 y~2 z~2) (y~5 y~2)/(x~2 y~5 z~2) (z~5-z~2)/(x~2 y~2 z~5)≥0 ①本文给出这道题的推广与加强.命题1 设 x,y,z 为正数且 xyz≥1,k,m  相似文献   

11.
例1.已知x,y,z∈R~ ,且满足x~2xy y~2/3=25,y~2/3 z~2=9,z~2 zx ~2=10,求xy 2yz 3zx的值. 解原方程组变形为(受启于余弦定理)从而可构造△ABC如图1.  相似文献   

12.
第39届 IMO 预选题:设 x,y,z 是正实数,且 xyz=1,求证:x~3/((1 y)(1 z)) y~3/((1 x)(1 z)) z~3/((1 x)(1 y))≥3/4.文[1]给出了这个不等式的四个推广:命题1 设 x,y,z 是正实数,且 xyz=1,λ是常数且λ≥0,则x~3/((λ y)(λ z)) y~3/((λ x)(λ z)) z~3/((λ x)(λ y))≥3/((1 λ)~2).命题2 设 x,y,z 是正实数,且 xyz=1,m 是正整数且m≥3,则x~m/((1 y)(1 z)) y~m/((1 x)(1 z)) z~m/((1 x)(1 y))≥3/4.  相似文献   

13.
1981年12期数学通报《几种类型的不等式证明》一文中(二): 已知条件为线性方程形式的不等式证明(即条件x+y+z+…A,A为常数)。 4:若x+y+z=1,试证x~2+y~2+z~2≥1/3证明:令x=1/3-t,y=1/3-2t,z=1/3+3t(t为实数)。 x~2+y~2+z~2=[(1/3)-t]~2+[(1/3)-2t]~2+[(1/3)-3t]~2 =1/9-(2/3)t+t~2+1/9-(4/3)t+4t~2+1/9+2t+9t~2 =1/3+14t~2≥1/3 (∵t为实数)。 当t=0时,即x=y=z=1/3时,上式等号成立。  相似文献   

14.
本刊1984年第1期上何平老师的“条件等式的一些证法”一文,读后收益不少。但我们感到还可以作些补充。因式分解法有以下几种情况: 1、通过对已知条件分解因式,获得某种简单关系,使证明得到解决。例1 已知x~2-yz=y~2-zx,x(?)y,求证z~2-xy=y~2-zx。证由已知x~2-yz=y~2-zx,移项得 x~2-y~2+zx-yz=0,分解因式得(x-y)(x+y+z)=0,∵x(?)y,∴x+y+z=0。①又z~2-xy-(y~2-zx)=(z-y)(x+y+z),  相似文献   

15.
《中学数学教学》有奖解题擂台(82)为:设x、y、z是正实数,满足x~2 y~2 z~2=1,n是正整数,证明或否定:1/(1-x~(2n)) 1/(1-1y~(2n)) 1/(1-z~(2n))≥(n n1)~(1 1/n)(1)这个不等式是成立的,本文给出证明.证明当n=1时,由已知及均值不等式(1)式左端=1-1x2 1-1y2 1-1z2=y21 z2 z2 1x2 x  相似文献   

16.
1.若(z-x)~2-4(x-y)(y-z)=0, 求证:x,y,z成等差数列。 [证一] (z-x)~2-4(x-y)(y-z) =z~2-2zx+x~2+4zx-4xy-4yz+4y~2 =(x+z)~2-2·2y(z+x)+4y =(z+x-2y)~2 =0,  相似文献   

17.
变量代换法通过式与式的相互转化,常能达到化难为易、化繁为简的目的。但在解题时极易发生下面错误,现分别举例分析如下。一、忽视原变量可取值范围,造成错误例1.若x+y+z=1,试证:x~2+y~2+z~2≥(1/3)。错解设x=(1/3)-t,y=(1/3)-2t,z=(1/3)+3t(t∈R) ∴ x~2+y~2+z~2=((1/3)-t)~2+((1/3)-2t)~2+((1/3)+3t)~2=(1/3)+14t~2≥(1/3) 当t=0,即x=y=z=1/3时,上式等号成立。剖析粗看,还以为是一个好方法,可细看,能发现其中代换x=(1/3)-t,y=(1/3)-2t,z=(1/3)+3t有欠妥当,因为x=1/ ,y=2/ ,z=4/ 显然适合已知条件x+  相似文献   

18.
第46届 IMO 第3题是不等式问题:正实数 x,y,z 满足 xyz≥1,证明(x~5-x~2)/(x~5 y~2 z~2) (y~5-y~2)/(y~5 z~2 x~2) (z~5-z~2)/(z~5 x~2 y~2)≥0.本文对其指数及项数作出一般性的推广.  相似文献   

19.
<正>文~([1])编入一道北欧数学奥林匹克竞赛题,求所有的整数组(x,y,z),满足三元三次不定方程x~3+y~3+z~3-3xyz=2003;文~([2-5])更进一步探讨了此方程的一般形式x~3+y~3+z~3-3xyz=d (1)现在,将方程(1)推广为四元三次的形式  相似文献   

20.
本刊95年第3期“集锦栏”中,有如下两个代数不等式: 若x,y,x∈R~ ,则 (1)(x~2 xy y~2)~(1/2) (y~2 yz z~2)~1/2 (z~2 zx x~2)~(1/2); 本文就上述不等式作两点探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号