首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new approximate method is proposed for the determination of the output sensitivity function of linear time-invariant systems using polynomial series expansions. The novelties of the proposed method are the use of the operational matrix of differentiation for the derivation of the algebraic equations approximating the differential equation, and the use of the operational matrix of polynomial series transformation, for the simplification of the computer code. The approach appears to be more direct and computationally simple than other presently known techniques.  相似文献   

2.
This paper considers the problem of identifying the parameters of dynamic systems from input-output records. Both lumped-parameter and distributed-parameter systems, deterministic and stochastic, are studied. The approach adopted is that of expanding the system variables in Walsh series. The key point is an operational matrix P which relates the coefficient matrix Г of the Walsh series of a given function with the coefficient matrix of its first derivative. Using this operational matrix P one overcomes the necessity to use differentiated data, a fact that usually is avoided either by integration of the data or by using discrete-time models. Actually, the original differential input-output model is converted to a linear algebraic (or regression) model convenient for a direct (or a least squares) solution. A feature of the method is that it permits the identification of unknown initial conditions simultaneously with the parameter identification. The results are first derived for single-input single-output systems and then are extended to multi-input multi-output systems. The case of non-constant parameters is treated by assuming polynomial forms. Some results are also included concerning the identification of state-space and integral equation models. The theory is supported by two examples, which give an idea of how effective the method is expected to be in the real practice.  相似文献   

3.
This paper establishes a clear procedure for the variational problem solution via the Walsh functions.technique. First the Walsh functions are introduced and their properties briefly summarized. Then an operational matrix is derived for integration use. The variational problems are solved by means of the direct method using the Walsh series. An illustrative example and a practical application to a heat conduction problem are included.  相似文献   

4.
晏林 《科技通报》2005,21(4):373-377,391
利用欧几里德算法和多项式环上的可逆线性变换,从理论上对多项式环上的一次不定方程组的解进行深入的研究,给出了用矩阵的初等变换求解多项式环上的一次不定方程组的矩阵解法,并利用MATLAB数学软件开发了相应的计算机程序。  相似文献   

5.
In the present paper, a new Legendre wavelet operational matrix of derivative is presented. Shifted Legendre polynomials and their properties are employed for deriving a general procedure for forming this matrix. The application of the proposed operational matrix for solving initial and boundary value problems is explained. Then the scheme is tested for linear and nonlinear singular examples. The obtained results demonstrate efficiency and capability of the proposed method.  相似文献   

6.
In this paper, the H control problem of periodic piecewise systems with polynomial time-varying subsystems is addressed. Based on a periodic Lyapunov function with a continuous time-dependent Lyapunov matrix polynomial, the H performance is studied. The result can be easily reduced to the conditions for periodic piecewise systems with constant subsystems or linear time-varying systems based on a common Lyapunov function or a linear time-varying Lyapunov matrix. Moreover, an H controller with time-varying polynomial controller gain is proposed as well, which could be directly solved with the linear matrix inequalities. A numerical example is presented to demonstrate the effectiveness of the proposed method.  相似文献   

7.
A finite series expansion method using discrete Legendre orthogonal polynomials (DLOPs) is applied to analyze linear time-varying discrete systems. An effective algorithm is derived to establish a representation which relates the DLOP coefficient vector of a product function to those of its two-component functions. By using this representation, along with the time-shift operational matrix of DLOP, a linear time-varying difference equation is converted into a set of linear algebraic equations. It is therefore convenient for computer computation.  相似文献   

8.
《Journal of The Franklin Institute》2021,358(18):10141-10164
In this paper, a new method is proposed to identify the coefficients and differentiation orders of fractional order systems with measurement noise. The proposed method combines the operational matrix method and the set-membership method. First, the block pulse functions operational matrix of the fractional differentiation is used to convert the fractional order system to an algebraic system. Then, the coefficients and differentiation orders are simultaneously estimated through a nest loop optimization process, where the optimal bounding ellipsoid set-membership algorithm is utilized to estimate the system’s coefficients and the orders are estimated with the interior-point method. The proposed method can accurately estimate the coefficients and differentiation orders of fractional order systems under any bounded measurement noise with less computational effort. Experimental results demonstrate the effectiveness of the proposed method.  相似文献   

9.
10.
This paper considers the tracking control problem for nonlinear Markov jump systems based on T–S fuzzy model approach with incomplete mode information. It is assumed that the mode transition rate matrix is not a priori knowledge and only partial information is available. Moreover, the mode where the system stays when operating is not fully accessible to the designed controller. In this incomplete mode information scenario, a hidden Markov model based mechanism is modified to simulate the mode deficiency mapping. The incomplete transition rate matrix is well defined in the form of a polynomial. Based on this, by constructing a polynomially parameter-dependent Lyapunov matrices and linear matrix techniques, sufficient conditions are established to ensure the stochastic stability and a prescribed tracking performance. The controller design scheme are presented by solving a series of LMIs. Examples are given in the end to illustrate the effectiveness of our proposed results.  相似文献   

11.
Starting with the energy and dissipation functions of the general n mesh linear bilateral network and using the operational methods of the Laplacian transformation, a solution is obtained for the Lagrangian equations of the system subject to initial boundary conditions. The equations take a particularly simple and general form if matrix notation is used.It is noted that the general case bears a close resemblance to the simple, one mesh, series circuit when the scalar factors which appear in this circuit are generalized to matrix form.  相似文献   

12.
This paper proposes a robust version of the unscented transform (UT) for one-dimensional random variables. It is assumed that the moments are not exactly known, but are known to lie in intervals. In this scenario, the moment matching equations are reformulated as a system of polynomial equations and inequalities, and it is proposed to use the Chebychev center of the solution set as a robust UT. This method yields a parametrized polynomial optimization problem, which in spite of being NP-Hard, can be relaxed by some algorithms that are proposed in this paper.  相似文献   

13.
晏林 《科技通报》2004,20(4):316-319
利用多项式环F[x]上的欧几里德算法给出求解多项式环F[x]上的多元一次不定方程通解的矩阵解法,同时利用MATLAB数学软件给出相应的计算机求解多项式环F[x]上一次不定方程的程序,这种方法可以普遍地应用.  相似文献   

14.
本文对矩阵多项式的求逆给出了一般方法,并针对于每一种方法给出了具体实例.  相似文献   

15.
A methodology for automatically identifying and clustering semantic features or topics in a heterogeneous text collection is presented. Textual data is encoded using a low rank nonnegative matrix factorization algorithm to retain natural data nonnegativity, thereby eliminating the need to use subtractive basis vector and encoding calculations present in other techniques such as principal component analysis for semantic feature abstraction. Existing techniques for nonnegative matrix factorization are reviewed and a new hybrid technique for nonnegative matrix factorization is proposed. Performance evaluations of the proposed method are conducted on a few benchmark text collections used in standard topic detection studies.  相似文献   

16.
The main goal of this study is to develop an efficient matrix approach for a new class of nonlinear 2D optimal control problems (OCPs) affected by variable-order fractional dynamical systems. The offered approach is established upon the shifted Chebyshev polynomials (SCPs) and their operational matrices. Through the way, a new operational matrix (OM) of variable-order fractional derivative is derived for the mentioned polynomials.The necessary optimality conditions are reduced to algebraic systems of equations by using the SCPs expansions of the state and control variables, and applying the method of constrained extrema. More precisely, the state and control variables are expanded in components of the SCPs with undetermined coefficients. Then these expansions are substituted in the cost functional and the 2D Gauss-Legendre quadrature rule is utilized to compute the double integral and consequently achieve a nonlinear algebraic equation.After that, the generated OM is employed to extract some algebraic equations from the approximated fractional dynamical system. Finally, the procedure of the constrained extremum is used by coupling the algebraic constraints yielded from the dynamical system and the initial and boundary conditions with the algebraic equation extracted from the cost functional by a set of unknown Lagrange multipliers. The method is established for three various types of boundary conditions.The precision of the proposed approach is examined through various types of test examples.Numerical simulations confirm the suggested approach is very accurate to provide satisfactory results.  相似文献   

17.
In this paper, we introduce a new architecture of genetic algorithms (GA)-based self-organizing polynomial neural networks (SOPNN) and discuss a comprehensive design methodology. Let us recall that the design of the “conventional” PNNs uses an extended group method of data handling (GMDH) and exploits polynomials (such as linear, quadratic, and modified quadratic functions) as well as considers a fixed number of input nodes (as being selected in advance by a network designer) at polynomial neurons (or nodes) located in each layer. The proposed GA-based SOPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional PNNs. The design procedure applied in the construction of each layer of a PNN deals with its structural optimization involving the selection of preferred nodes (or PNs) with specific local characteristics (such as the number of input variables, the order of the polynomial, and a collection of the specific subset of input variables) and addresses specific aspects of parametric optimization. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the network. To evaluate the performance of the GA-based SOPNN, the model is experimented with using chaotic time series data. A comparative analysis reveals that the proposed GA-based SOPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.  相似文献   

18.
This paper studies the stability analysis problems of periodic piecewise systems, in which subsystems are given in the time-varying polynomial forms. A Lyapunov function with continuous time-varying Lyapunov matrix is adopted, which relaxes constraints on the variation of Lyapunov function in each subsystem. Using the time interval information, the exponential stability and stabilizing controller synthesis are studied. The results provide a possible alternative method to study the general periodic time-varying systems, which may further support the analysis and synthesis of general periodic systems. The effectiveness of the proposed method is validated and illustrated via numerical examples.  相似文献   

19.
This paper investigates the problem of designing a nonlinear HH feedback controller for polynomial discrete-time systems with and without polytopic uncertainties. The objective is to design a controller such that the ratio between the energy of the regulated outputs and the energy of the exogenous disturbance/inputs is minimized or guaranteed to be less or equal to a prescribed value. It is well known that the state dependant or parameter dependant Lyapunov function is always chosen for synthesizing polynomial discrete-time systems. This leads the solution to be nonconvex because the Lyapunov function and the controller matrix are coupled and therefore cannot be solved by semidefinite programming (SDP). Hence, in this paper, an integrator is proposed to be incorporated into the controller structure. In doing so, the coupling of Lyapunov function and controller matrix can be eliminated effectively. This somehow simplifies the numerical solution of the problem. Then, by using SOS decomposition approach, sufficient conditions for the existence of the proposed controller are provided in terms of solvability of the state-dependent linear matrix inequalities (SDLMIs) which can be solved by SDP. A tunnel diode circuit is used to demonstrate the effectiveness of this integrator approach.  相似文献   

20.
传统的数字识别算法存在识别速度、识别准确率和识别方法复杂度三者无法兼顾的问题,为解决该问题,提出了基于特征矩阵的高效数字识别算法。该算法首先在预处理的基础上获取字符的特征矩阵,然后用特征矩阵对字符的特征横线、竖线等特征进行提取,最后利用结构语句识别的方法实现数字识别。实验结果表明,基于特征矩阵的高效数字识别算法思路简单、速度快,且识别率达97%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号