首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高昌 《教育革新》2007,(10):59-59
我们知道,方程f1(x,y) λf2(x,y)=0表示的曲线经过f1(x,y)=0和f2(x,y)=0交点的曲线系方程.利用上述曲线系方程求过已知两曲线交点的新曲线方程,可避免求交点的坐标,其方法如下.  相似文献   

2.
已知曲线间的位置关系,求曲线方程中参数满足的条件.这类习题在平面解析几何中常常遇到.现在就这类习题的解法,作以探讨. 如果已知曲线C_1:F(x,y,a)=0和曲线C_2:G(x,y)=0(其中a为参数),那么C_1和C_2的交点问题,归结为方程组F(x,y,a)=0 G(x,y)=0 有无实数解问题。利用方程组同解原理,得到与之同解的方程组{φ(x,a)=0 G(x,y)=0 (或者g(y,a)=0 G(x,y)=0). 这样一来,问题就转化为由φ(x,a)=0满足的条件,求参数a的问题.  相似文献   

3.
众所周知,如果两条曲线的方程是:f_1(x,y)=0和f_2(X,y)= 0,它们的交点是P(x_0,y_0),则方程f_1(x,y)+ λf_2(x,y)=0曲线是经过定点P的曲线系方程。利用或构造这个方程进行解题,可使某些问题的求  相似文献   

4.
求轨迹方程问题是中学数学课重要内容之一,它在培养学生逻辑思维能力,分析问题解决问题的能力方面起着重要作用。所谓适合某条件的轨迹方程f(x,y)=0,要求:(1)凡适合条件的点的坐标(x,y)是方程f(x,y)=0的解.这时该方程对所求轨迹而言是完备的,也叫方程f(x,y)=0具有充分性。(2)凡是方程f(x,y)=0的解作为坐标(x,y)的点都适合该条件.这时该方程对所求轨迹而言是纯粹的,也叫方程f(x,y)=0具有必要性。在解求轨迹方程题时,是根据题目条件,运用解析法(直角坐标系或极坐标系)转化为二元方程f(x,y)=0。这个方程所表示的曲线是否是适合该条件的轨迹呢?本应就该方程的纯粹性和完备性加以证明。现行教材  相似文献   

5.
1.问题背景 文[1]及文[2]讨论了⊙C1:x2+y2+D1x+E1y+F1=0及⊙C2:x2+y2+D2x+E2y+F2=0无公共点时,方程x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+ F2)=0的意义,但均没有指明方程表示何种曲线. 本文试图通过对方程x2+ y2+ Dx+Ey+F+λ(Ax+By+C)=0及x2+ y2+ D1x+E1y+F1+λ(x2+ y2+ D2x+E2y+ F2)=0的分析,从而阐明:当直线l与⊙M及⊙C1与⊙C2相交(以下简称“相交圆系”)时,上述方程一定表示圆;当直线l与⊙M及⊙C1与⊙C2不相交(以下简称“非相交圆系”)时,上述方程可能表示何种曲线.  相似文献   

6.
求动弦的中点轨迹,历来都是高考的重点、难点,也是热点.本文介绍三种解法、思路新颖、清晰、解法简捷、达到化繁为简,化难为易目的.1用中心对称求二次曲线弦的中点轨迹我们知道,圆锥曲线1C:F(x,y)=0,关于点00M(x,y)中心对称的曲线2C的方程是:00F(2x?x,2y?y)=0.若曲线1C和2C相交  相似文献   

7.
《考试》1998,(Z1)
求曲线c关于定直线l的对称曲线方程,或者求曲线c关于定点M的对称曲线方程,这一类问题都可以用轨迹法解决。若给定曲线c的方程F(x,y)=0及直线l的方程Ax By c=0,求曲线c关于l的对称曲线c′的方程,可设c′上一动点P(x,y),P点关于l的对称点Q(x_0,y_0)在曲线c上,由于P、Q关于l对称,故P、Q连线斜率  相似文献   

8.
大家知道,如果方程f(x,y)=0表示平面内的一条曲线c,那么不等式f(x,y)>0和f(x,y)<0分别表示平面被曲线c分成的两个区域。换言之:点P(x,y)满足f(x,y)>0或f(x,y)<0,则点P(x,y)分别在曲线c分成的两个平面区域内。这一思想用于解题,有时颇有好处。举几例以作说明: 1 用以去绝对值符号 例1 △ABC三边所在直线方程为:AB:2x y-3-25((1/2)2)=0,BC:4x-3y-11 25((1/2)10)=0,AC:x 7y 5 50((1/2)5)=0,求△ABC的内切圆方程。 解 设所求内切圆的圆心I(a,b),半  相似文献   

9.
大家知道,若已知曲线C的方程为F(x,y)=0,且点P(x0,y0)在曲线C上,则有关系式F(x0,y0)=0.这一关系我们常用来解题.而若点P(x0,y0)在曲线外,则有关系式F(x0,y0)&;lt;0或F(x0,y0)&;gt;0,这一关系常被忽略.下面就谈其应用.  相似文献   

10.
<正> 本文试图不用微分法而用曲线系方程求二次曲线的曲率圆,因而也就求出二次曲线在某点的曲率。为此,需要用到下列有一些引理。 引理1 设曲线f(x,y)=0与g(x,y)=0相交,则过它们的交点的曲线系方程为:f(x,y)+λ·g(x,y)=0,λ∈R。  相似文献   

11.
众所周知,求轨迹方程必须注意完备性和纯粹性。一般说来,根据限制动点运动的条件求出的轨迹方程F(x,y)=0,其完备性是直接明显的,而其纯粹性却往往需要进一步讨论,即根据限制动点运动的条件所得方程F(x,y)=0的曲线很可能含有不合轨迹条件的点,必须去掉这些点,才能保证轨迹的纯粹性。因此,在不  相似文献   

12.
曲线都可以看做是适合某种条件的点的轨迹,由曲线的性质建立曲线的方程是解析几何的基本课题之一,每年高考几乎都有这方面的试题。求轨迹方程的一般步骤是:1、选取适当的坐标系,用(x,y)表示平面上动点M的坐标;2、根据动点满足的几何条件P(M),列出动点M的坐标x、y间的代数关系式F(x,y)=0;3、证明所得方  相似文献   

13.
我们熟知,直线f(x,y)=0和椭圆F(x,y)=0如果相切,在解方程组{f(x,y)=0 F(x,y)=0过程中得出的一元二次方程的判别式等于零。这就是直线f(x,y)=0和椭圆F(x,y)=0相切的充要条件。我们发现,如果直线方程形式为Ax By=1,椭圆方程形式为x~2/a~2 y~2/b~2=1,那么,直线和椭圆相切的充要条件就是a~2A~2 b~2B~2=1。用这个式子解题往往很方便。下面给出这个式子的证明和应用举例。  相似文献   

14.
在解析几何的学习中,我们往往要遇到这样一类问题,即已知曲线C的方程是F(x,y)=0,求其关于直线l的对称曲线C′的方程。一般说来,这种问题解答  相似文献   

15.
找准切点求切线例1求曲线(fx)=x3-3x2+2x过原点的切线方程.错解由于原点在曲线上,所以原点为切点.而f′(x)=3x2-6x+2,所以f′(0)=2.所以y-0=2(x-0),即所求切线方程为y=2x.  相似文献   

16.
众所周知,曲线f(x,y)=0关于x轴对称的曲线方程是f(x,-y)=0,关于y轴对称的曲线方程是f(-x,y)=0,关于原点成中心对称的曲线方程是f(-x,-y)=0由此想到曲线f(x,y)=0关于任何已知直线ax+by+c=0成轴对称的曲线方程是什么形式?关于任何已知点M(a,b)成中心对称的曲线方程又是什么形式?这就是本文要探讨的问题。 先看一名中学生对下面一道习题的奇妙解法。题目是:“求直线3x-4y+2=0关于直线x-y+3=0成轴对称的直线方程。” 解 由x-y+3=0,得x=y-3,y=x+3,同时代入3x-4y+2=0中,得3(y-3)-4(x+3)+2=0,即4x-3y+19=0。此即为所求的对称直线方程。  相似文献   

17.
众所周知,过曲线F1(x,y)=0与F2(x,y)=0交点的曲线系方程可表示为F1(x,y)+λF2(x,y)=0.下面就曲线方程的应用简举几例.  相似文献   

18.
对于有些解析几何题,正面思考或按常规方法求解较难时,若能利用圆锥曲线系,巧设未知数,往往能起到事半功倍的效果,下举例说明.一、得用共交点的圆锥曲线系解题一般地过圆锥曲线C1:f(x,y)=0与圆锥曲线C2:g(x,y)=0的交点的圆锥曲线系方程都可以表示成:f(x,y)+λg(x,y)=0(λ≠-1)(不包括圆锥曲线C2),如过圆C1:x2+y2+D1x+E1y+F=0与圆C2:x2+y2+D2x+E2y+F2=0的交点的圆系方程为:x2+y2+D1x+E1y+F+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1).例1已知圆C1:x2+y2+3x+4y+3=0,圆C2:x2+y2+4x+5y-1=0,求过已知两圆的交点,且过原点的圆的方程.解由已知不妨设过已知两圆的交点圆的方程为:x2+y2+3x+4y+3+λ(x2+y2+4x+5y-1)=0(λ≠-1).又圆过原点,将(0,0)代入圆方程可解得λ=3,从而所求的方程为:4x2+4y2+15x+19y=0.  相似文献   

19.
众所周知,对于求轨迹方程,若直接求形如F(x,y)=0的普通方程有困难,就应考虑引入一个参数,建立形如x=f(t),y=g(t)的显式参数方程,但有时寻找显式参数方程不易或比较繁杂,我们就应考虑建立曲线轨迹的隐式参数方程,下面就参数个数的多少分述如下。  相似文献   

20.
很多数学报及兄弟刊物都介绍过中点弦所在直线方程问题.有的甚至给出了公式式的结论,但结论较为复杂不易记忆.本文介绍两种更为行之有效的方法. 我们先证明一个命题:二次曲线F(x,y)=0,以定点P(x0,y0)为中点的弦所在的直线方程为:F(2x0-x,2y0-y)=0.然后便可套用结论,直接得出方程. 证明:设以P(X0,y0)为中点的二次曲线F(x,y)=0的弦的两个端点分别为A、B,且A(x,y),则B(2x0-x,2y0-y),由于A、B均是二次曲线F(x,y)=0上的点,从而可得 F(x,y)=0 ① F(2x0-x,2y0-y)=0 ②  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号