首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、定理:已知二面角的平面角为φ,在二面角的棱上任取一点A分别在两个半平面内作射线,两射线所成的角为θ,两射线与棱为公共边所成的角分别为θ_1和θ_2,则有: cosθ=cosθ_1 cosθ_2+sinθ_1 sinθ_2 coφ 当印φ=90°时,公式为cosθ=cosθ_1 cosθ_2 证明:(设φ,θ_1,θ_2均为锐角) 如图,∠BAC=θ,∠BAQ=θ_1,∠CAQ=θ_2,在PQ上任取一点D,在平面α和β内分别作BD⊥PQ交AB于B,作DC⊥PQ,交AC于C,连BC,则∠BDC=φ,并设AD=a,  相似文献   

2.
正1、如图:已知二面角α-MN-β,A∈MN,AB(?)α,AC(?)β,设∠BAN=θ_1,∠CAN=θ_2,二面角α-MN-β的大小为θ_3,∠BAC=θ,那么cosθ=cosθ_1cosθ_2+sinθ_1sinθ_2cosθ_3证明:如图(一)1°、当θ_1、θ_2均为锐角时,在AB上取一点E(异于点A),在平面α内作EG⊥MN,垂足为G,在平面β内作GF⊥MN  相似文献   

3.
如图,AB 和 CD 是四面体 ABCD 的一双对棱。为叙述方便,我们约定:棱 AB 所在的二面角的平面角为θ1,∠ACB=α_1,∠ADB=3_1;棱 CD 所在的二面角的平面角为θ_2,∠CAD=α_2,∠CBD=β_2。在四面体 ABCD 中,如上所述的八个元素(两条棱、六个角)之间存在着十分密切的联系。本文揭示出其中的两个关系式,并简单介绍它们在解题中的实际应用。定理一四面体 ABCD 中,AB/(sinθ_1 sinα_1 sinβ_1)=CD/(sinθ_2 sinα_2 sinβ_2)。证明:如图,过四面体 ABCD 的顶点  相似文献   

4.
苏教版《数学课课练》高二下册第17课时例1:已知:∠AOB=90°,过点O引∠AOB所在平面的斜线OC与OA,OB分别成45°,60°角,求二面角A-OC-B的余弦值.图1本题是在已知三个面角∠AOB,∠AOC,∠BOC的条件下,利用二面角的定义求二面角A-OC-B的余弦值.若将本题中的三个面角由特殊推广到一般,设∠AOB=θ1,∠AOC=θ2,∠BOC=θ3,二面角A-OC-B为θ,则有如下结论:cosθ=cosθs1i-nθc2o·ssθi2n·θc3osθ3.证明在OC上取一点D,使OD=1,过点D分别在面AOC,面BOC内作DE⊥OC,DF⊥OC,DE,DF分别交OA,OB于E,F,连EF,则∠EDF为二面角…  相似文献   

5.
一、三余弦公式及其推论三余弦公式:如图1,PO⊥平面α于O,PA∩α=A,ABα,直线AP与AB成θ角,AP与AO成θ1角,AO与AB成θ2角,则有cosθ=cosθ1cosθ2.证明:如图1,作OB⊥AB于B,连结PB,则PB⊥AB,∠PAB=θ,∠PAO=θ1,∠OAB=θ2,设|PA|=1,则|AO|=cosθ1,|AB|=|AO|cosθ2=cosθ1cosθ2,又|AB|=cosθ,所以cosθ=  相似文献   

6.
文[1]P48三夹角与距离中证明了命题:如图1,设OA,OB,OC是三条不共面的射线(即三面角),∠AOB=θ1,∠COB=θ2,∠AOC=θ3,二面角A-OB-C为直二面角(即平面AOB⊥平面BOC),则有公式cosθ3=cosθ1·cosθ2①.  相似文献   

7.
立体几何命题中,求二面角的值是一种常见而且重要的问题。一般的做法是先找出二面角的平面角再计算。本文拟给出一个直接求二面角的公式,并讨论一些相关问题。 定理 设二面角M-AB-N的大小为a,P∈AB,D∈平面N,C∈平面M,∠CPB=θ_1,∠DPB=θ_2,∠CPD=θ,则有 cosθ-cosθ_1cosθ_2 证明:如图1,作AB的垂面,分别交PC、AB、PD于C、E、D.则∠CED=a,∠CEP=∠DEP=90°.设PE=x,从而有PC=xsecθ_1,EC=xtgθ_1,PD=xsecθ_2,DE=xtgθ_2. 在△PCD与△ECD中,分别用余弦定理求CD~2,得整理得 应用此定理便可直接求出二面角的值,请看下面的例子。  相似文献   

8.
本刊1990年第3期刊登的《一道值得重视的立体几何习题》一文,介绍了习题: “AB和平面α所成的角是θ_1,AC在平面α内,AC和AB的射影AB′成角θ_1,设∠BAC=θ,求证 cosθ_1cosθ_2=cosθ(*)~n的结论的广泛应用,读后颇受启发。但美中不足的是(*)式没有涉及二面角,如图1,若在α内过B′作B′D⊥AC,D为垂足,则  相似文献   

9.
如图1,P为平面α外一点,PO⊥α,O为垂足,直线l<α,点P与直线l确定平面为β,点B∈l,设PB与平面α所成的角∠PBO=θ1,与l所成的角∠PBA=θ,二面角α-l-β的平面角∠PAO=φ.下面我们来研究θ1、θ、φ之间的关系.在Rt△POB中,sinθ1=PPBO.在Rt△POA中,sinφ=PPAO.在Rt△PBA中,sinθ=PPBA.因为PPBO=PPAO·PPBA,所以sinθ1=sinφ·sinθ在上述公式中,因为0相似文献   

10.
两角和的正弦、余弦展开式可用图象证明.1.求证:sin(α+β)=sinαcosβ+sinβcosα.证明如图,在RtΔABC中,∠B=90°,D为AB上一点,边D作DE⊥CD于D,交AC于E,过E作EF⊥AB于F.  相似文献   

11.
空间几何体的基本结构是三面角,对于三面角,我们有: 定理:在三面角P-ABC中,若以PB为棱的二面角是直二面角;记∠APB=θ_1,∠BPC=θ_2,∠APC=θ,以PA、PC为棱的二面角分别PA、PC, 则:  相似文献   

12.
证法 1 如图1,设∠BAD=α,∠ CAD=β(0 <α,β <π2 ) ,过 B作BD⊥ AD交 AC于C,则有cosα=ADAB,cosβ=ADAC.又∵S△ B A C=S△ B A D+S△ D A C,∴ 12 · AB· AC· sin(α+β) =12 AB·AD· sinα+12 AD· AC· sinβ.两边同时除以 12 AB·AC,可得sin(α+β) =ADAC·sinα+ADAB· sinβ=cosβ· sinα+cosα· sinβ.运用诱导公式 ,易证α,β不是锐角时 ,式子仍然成立 .图 2证法 2 如图2 ,设∠BAD=α,∠DAC=β(0 <α,β <π2 ) ,作 BD⊥AD交 AC于 C,作BE⊥ AC于 E,则有 ADAC=cosβ,BDAB=sinα,ADAB=…  相似文献   

13.
二面角大小是通过二面角的平面角的大小来反映的,在求解二面角的平面角的大小时,要充分运用线与线、线与面、面与面之间的关系,因而它具有综合性强、灵活性大的特点,那么怎样求二面角的平面角呢?笔者给大家介绍5种常见方法.1定义法定义法———即在二面角α-l-β的棱l上任取一点O,然后在2个半平面内分别作棱的垂线OA、OB,则射线OA、OB所成的角即为所求二面角α-l-β的平面角.例1已知三棱锥P-ABC中,∠APB=∠BPC=∠CPA=60°,求二面角A-PB-C的余弦值.图1解如图1,在二面角的棱PB上任取一点Q,在半平面PBA和PBC内分别作QM⊥PB,QN…  相似文献   

14.
众所周知,在三角形中有正弦定理、余弦定理、射影定理,它们揭示了三角形中边角间的重要关系.这三个定理联系紧密,并可互相推出.在四面体中,也有类似的三个定理,它们表示了面角与二面角之间的关系,当然也可彼此互推. 在四面体O-ABC中,设三个面角分别为α、β、γ,对应的二面角分别为θ-α、θ-β、θ-γ,(如图1)则有 定理1 cosα=cosβ·cosγ sinβ·sinγ·cosθ_α cosβ=cosα·cosγ sinα·sinγ·cosθ_β cosγ=cosα·cosβ sinα·sinβ·cosθ_γ 证明 利用有关射影的定理:(1)平面上折线的各边射影之和等于封闭线段在射影轴上的射影.(2)直线在轴上的垂直投影等于被投线段的长度乘以该线段和轴的交角的余弦.  相似文献   

15.
文[1]及文[2]全国高中数学联赛模拟试题(二)第二试(题一):在直角坐标系xOy中,设点P的坐标为(3,4),点Q和点R分别在x轴的正半轴上及y轴的正半轴上,使得PQ=QR=RP,试求PQ的长度.文[1]及文[2]分别讨论了它的解,本文进一步探讨并给出更为简洁的解法及命题的推广.解法一(三角法)如图,记PQ=QR=RP=a.作PE⊥x轴于点E,PF⊥y轴于点F,记∠R PF=θ,则∠R PE=900?θ,∠Q PE=600?∠R PE=θ?300,所以cos3,cos(30)4.aaθθ?????=?°=②①P(3,4)Q R xy O F E由②得a?cosθ?cos300+a?sinθ?sin300=4,并由①,即33sin14?2+a?θ?2=.从而a?sinθ=8?…  相似文献   

16.
正确找出"二面角"是学好"二面角"这节知识的关键.求二面角的常用方法有: (1)定义法:作棱的乖线:从棱上一点分别在两个平面内作棱的垂线,所成夹角即为二面角的平面角. (2)利用三垂线定理或逆定理:"两垂线一连结". (3)面积射影公式:cosθ=S射/S底.  相似文献   

17.
一、构造函数例1设α、m为常数,θ是任意实数,求证:眼cos(θ+α)+mcosθ演2≤1+2mcosα+m2.证明构造函数y=f(θ)=1+2mcosα+m2-眼cos(θ+α)+mcosθ演2,则只需证明y≥0即可.f(θ)=sin2(θ+α)+2m眼cosα-cosθcos(θ+α)演+m2sin2θ.令sin(θ+α)=x,则得二次函数y=x2+2msinθ·x+m2sin2θ.由于Δ=4m2sin2θ-4m2sin2θ=0,且二次项系数为1,故y≥0,即原不等式成立.二、构造数列例2已知:sinφcosφ=60169,π4<φ<π2,求sinφ、cosφ的值.解由题意可知,sinφcosφ=(215姨13)2且sinφ>cosφ,构造等比数列cosφ,215姨13,sinφ.设sinφ=215姨13·q,c…  相似文献   

18.
定理:已知平面φ_1、φ2、φ_3两两相交,φ_1∩φ_2=φ_3,φ_2∩φ_3=l_1,φ_3∩φ_1=l_2,并且φ_1与φ_2所成二面角为θ,φ_2与φ_3所成二面角为θ_1;φ_3与φ_1所成二面角为θ_2。则  相似文献   

19.
本刊90年3期《一道值得重视的立体几何习题》、92年2期《一个值得重视的二面角公式》讨论了立体几何中的一个习题: “AB和平面α所成的角是θ_1,AC在平面α内,AC和AB的射影AB′成角θ_2,设∠BAC=θ,求证:cosθ_1cosθ_2=cosθ”的应用和推广,很有教益,也非常重要。笔者认为,这习题之所以重要,不是没有涉及二面角,而是把直二面角的存在与面角的计算公式:  相似文献   

20.
在立体几何中 ,有一个常见的模型 :图 1        图 2如图 1,已知直线a、b、l与平面α满足a α ,b α ,a∩b =P ,P∈l ,l与a、b成相等的角θ ,在l上任取异于点P的Q点 ,过Q作QK⊥α于K ,那么K点到直线a、b的距离相等 ,即K点落在∠APB(或其补角 )的平分线所在的直线上 ,记∠QPK =θ1 ,∠KPB =θ2 ,不难得到cosθ =cosθ1 ·cosθ2 .运用上述结论 ,可解决过空间一点P且与两直线 (包括二异面直线 )成等角的直线的条数问题 .2 0 0 4年高考数学 (湖北卷 )第 11题 :已知平面α与 β所成的二面角为 80° ,P为α、β外一定点 ,过点P…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号