首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In psychological, social, behavioral, and medical studies, hidden Markov models (HMMs) have been extensively applied to the simultaneous modeling of heterogeneous observation and hidden transition in the analysis of longitudinal data. However, the majority of the existing HMMs are developed in a parametric framework without latent variables. This study considers a novel semiparametric HMM, which comprises a semiparametric latent variable model to investigate the complex interrelationships among latent variables and a nonparametric transition model to examine the linear and nonlinear effects of potential predictors on hidden transition. The Bayesian P-splines approach and Markov chain Monte Carlo methods are developed to estimate the unknown, a Bayesian model comparison statistic, is employed to conduct model comparison. The empirical performance of the proposed methodology is evaluated through simulation studies. An application to a data set derived from the National Longitudinal Survey of Youth is presented.  相似文献   

3.
Structural equation models are widely appreciated in behavioral, social, and psychological research to model relations between latent constructs and manifest variables, and to control for measurement errors. Most applications of structural equation models are based on fully observed data that are independently distributed. However, hierarchical data with a correlated structure are common in behavioral research, and very often, missing data are encountered. In this article, we propose a 2-level structural equation model for analyzing hierarchical data with missing entries, and describe a Bayesian approach for estimation and model comparison. We show how to use WinBUGS software to get the solution conveniently. The proposed methodologies are illustrated through a simulation study, and a real application in relation to organizational and management research concerning the study of the interrelationships of the latent constructs about job satisfaction, job responsibility, and life satisfaction for citizens in 43 countries.  相似文献   

4.
The aims of this study were to present a method for developing a path analytic network model using data acquired from positron emission tomography. Regions of interest within the human brain were identified through quantitative activation likelihood estimation meta-analysis. Using this information, a “true” or population path model was then developed using Bayesian structural equation modeling. To evaluate the impact of sample size on parameter estimation bias, proportion of parameter replication coverage, and statistical power, a 2 group (clinical/control) × 6 (sample size: N = 10, N = 15, N = 20, N = 25, N = 50, N = 100) Markov chain Monte Carlo study was conducted. Results indicate that using a sample size of less than N = 15 per group will produce parameter estimates exhibiting bias greater than 5% and statistical power below .80.  相似文献   

5.
Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes and illustrates key features of Bayesian approaches to model diagnostics and assessing data–model fit of structural equation models, discussing their merits relative to traditional procedures.  相似文献   

6.
This article examines Bayesian model averaging as a means of addressing predictive performance in Bayesian structural equation models. The current approach to addressing the problem of model uncertainty lies in the method of Bayesian model averaging. We expand the work of Madigan and his colleagues by considering a structural equation model as a special case of a directed acyclic graph. We then provide an algorithm that searches the model space for submodels and obtains a weighted average of the submodels using posterior model probabilities as weights. Our simulation study provides a frequentist evaluation of our Bayesian model averaging approach and indicates that when the true model is known, Bayesian model averaging does not yield necessarily better predictive performance compared to nonaveraged models. However, our case study using data from an international large-scale assessment reveals that the model-averaged submodels provide better posterior predictive performance compared to the initially specified model.  相似文献   

7.
Dynamic structural equation modeling (DSEM) is a novel, intensive longitudinal data (ILD) analysis framework. DSEM models intraindividual changes over time on Level 1 and allows the parameters of these processes to vary across individuals on Level 2 using random effects. DSEM merges time series, structural equation, multilevel, and time-varying effects models. Despite the well-known properties of these analysis areas by themselves, it is unclear how their sample size requirements and recommendations transfer to the DSEM framework. This article presents the results of a simulation study that examines the estimation quality of univariate 2-level autoregressive models of order 1, AR(1), using Bayesian analysis in Mplus Version 8. Three features are varied in the simulations: complexity of the model, number of subjects, and number of time points per subject. Samples with many subjects and few time points are shown to perform substantially better than samples with few subjects and many time points.  相似文献   

8.
The analysis of interaction among latent variables has received much attention. This article introduces a Bayesian approach to analyze a general structural equation model that accommodates the general nonlinear terms of latent variables and covariates. This approach produces a Bayesian estimate that has the same statistical optimal properties as a maximum likelihood estimate. Other advantages over the traditional approaches are discussed. More important, we demonstrate through examples how to use the freely available software WinBUGS to obtain Bayesian results for estimation and model comparison. Simulation studies are conducted to assess the empirical performances of the approach for situations with various sample sizes and prior inputs.  相似文献   

9.
A problem central to structural equation modeling is measurement model specification error and its propagation into the structural part of nonrecursive latent variable models. Full-information estimation techniques such as maximum likelihood are consistent when the model is correctly specified and the sample size large enough; however, any misspecification within the model can affect parameter estimates in other parts of the model. The goals of this study included comparing the bias, efficiency, and accuracy of hypothesis tests in nonrecursive latent variable models with indirect and direct feedback loops. We compare the performance of maximum likelihood, two-stage least-squares and Bayesian estimators in nonrecursive latent variable models with indirect and direct feedback loops under various degrees of misspecification in small to moderate sample size conditions.  相似文献   

10.
This article examines whether Bayesian estimation with minimally informed prior distributions can alleviate the estimation problems often encountered with fitting the true score multitrait–multimethod structural equation model with split-ballot data. In particular, the true score multitrait–multimethod structural equation model encounters an empirical underidentification when (a) latent variable correlations are homogenous, and (b) fitted to data from a 2-group split-ballot design; an understudied case of empirical underidentification due to a planned missingness (i.e., split-ballot) design. A Monte Carlo simulation and 3 empirical examples showed that Bayesian estimation performs better than maximum likelihood (ML) estimation. Therefore, we suggest using Bayesian estimation with minimally informative prior distributions when estimating the true score multitrait–multimethod structural equation model with split-ballot data. Furthermore, given the increase in planned missingness designs in psychological research, we also suggest using Bayesian estimation as a potential alternative to ML estimation for analyses using data from planned missingness designs.  相似文献   

11.
Despite its importance to structural equation modeling, model evaluation remains underdeveloped in the Bayesian SEM framework. Posterior predictive p-values (PPP) and deviance information criteria (DIC) are now available in popular software for Bayesian model evaluation, but they remain underutilized. This is largely due to the lack of recommendations for their use. To address this problem, PPP and DIC were evaluated in a series of Monte Carlo simulation studies. The results show that both PPP and DIC are influenced by severity of model misspecification, sample size, model size, and choice of prior. The cutoffs PPP < 0.10 and ?DIC > 7 work best in the conditions and models tested here to maintain low false detection rates and misspecified model selection rates, respectively. The recommendations provided in this study will help researchers evaluate their models in a Bayesian SEM analysis and set the stage for future development and evaluation of Bayesian SEM fit indices.  相似文献   

12.
采用带有随机微分方程的非线性混合效应模型对群体药物代谢动力学数据建模,通过在状态方程中引入随机项,将常微分方程扩展到随机微分方程.和常微分方程相比,随机微分方程可解决群体药物代谢动力学模型中相关残差问题.利用贝叶斯估计对非线性混合效应随机微分方程模型参数进行估计,给出群体参数及个体参数的精确后验分布,将Gibbs和Metropolis-Hastings算法相结合,给出参数估计值.通过计算机模拟和实例分析验证了方法的可靠性,结果表明利用非线性混合效应随机微分方程模型及贝叶斯估计方法分析群体药物代谢动力学数据是可行的.  相似文献   

13.
Posterior predictive model checking (PPMC) is a Bayesian model checking method that compares the observed data to (plausible) future observations from the posterior predictive distribution. We propose an alternative to PPMC in the context of structural equation modeling, which we term the poor person’s PPMC (PP-PPMC), for the situation wherein one cannot afford (or is unwilling) to draw samples from the full posterior. Using only by-products of likelihood-based estimation (maximum likelihood estimate and information matrix), the PP-PPMC offers a natural method to handle parameter uncertainty in model fit assessment. In particular, a coupling relationship between the classical p values from the model fit chi-square test and the predictive p values from the PP-PPMC method is carefully examined, suggesting that PP-PPMC might offer an alternative, principled approach for model fit assessment. We also illustrate the flexibility of the PP-PPMC approach by applying it to case-influence diagnostics.  相似文献   

14.
MplusAutomation is a package for R that facilitates complex latent variable analyses in Mplus involving comparisons among many models and parameters. More specifically, MplusAutomation provides tools to accomplish 3 objectives: to create and manage Mplus syntax for groups of related models; to automate the estimation of many models; and to extract, aggregate, and compare fit statistics, parameter estimates, and ancillary model outputs. We provide an introduction to the package using applied examples including a large-scale simulation study. By reducing the effort required for large-scale studies, a broad goal of MplusAutomation is to support methodological developments in structural equation modeling using Mplus.  相似文献   

15.
Structural equation modeling is a common multivariate technique for the assessment of the interrelationships among latent variables. Structural equation models have been extensively applied to behavioral, medical, and social sciences. Basic structural equation models consist of a measurement equation for characterizing latent variables through multiple observed variables and a mean regression-type structural equation for investigating how explanatory latent variables influence outcomes of interest. However, the conventional structural equation does not provide a comprehensive analysis of the relationship between latent variables. In this article, we introduce the quantile regression method into structural equation models to assess the conditional quantile of the outcome latent variable given the explanatory latent variables and covariates. The estimation is conducted in a Bayesian framework with Markov Chain Monte Carlo algorithm. The posterior inference is performed with the help of asymmetric Laplace distribution. A simulation shows that the proposed method performs satisfactorily. An application to a study of chronic kidney disease is presented.  相似文献   

16.
Recent handbooks of giftedness or expertise propose a plethora of conceptions on the development of excellent performance but, to our knowledge, there are no comparative studies that provide empirical evidence of their validity to guide researchers and practitioners in their adoption of a particular conception. This study sought to close that gap by conducting an empirical comparison of the major approaches to giftedness and expertise currently in use: the IQ model, the performance model, the moderator model, and the systemic model. The four models were tested in a longitudinal study with a sample of N = 350 German students attending university preparatory schools; 25% of the sample had been assigned to special classes for the gifted. The construct and predictive validity of the four models were tested by means of structural equation modeling. Theoretical considerations along with our results indicated a differentiation among the models whereby some could only predict while others could also explain the emergence of excellent performance and thereby yield valuable information for the design of interventions. The empirical comparison of the approaches showed that they were unequally suited for the two challenges. For prediction purposes, the performance approach proved best while, for explanations, the moderator and systemic approaches were the most promising candidates. Even so, the latter did demonstrate conceptual and/or methodological problems. The IQ approach was superseded by the other approaches on both prediction and explanation. Implications and limitations of the findings are discussed.  相似文献   

17.
In this study, the authors investigated incorporating adjusted model fit information into the root mean square error of approximation (RMSEA) fit index. Through Monte Carlo simulation, the usefulness of this adjusted index was evaluated for assessing model adequacy in structural equation modeling when the multivariate normality assumption underlying maximum likelihood estimation is violated. Adjustment to the RMSEA was considered in 2 forms: a rescaling adjustment via the Satorra-Bentler rescaled goodness-of-fit statistic and a bootstrap adjustment via the Bollen and Stine adjusted model p value. Both properly specified and misspecifed models were examined. The adjusted RMSEA was evaluated in terms of the average index value across study conditions and with respect to model rejection rates under tests of exact fit, close fit, and not-close fit.  相似文献   

18.
The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying lengths (T = 25, 50, 75, 100, 125) using Statistical Analysis System (SAS) version 9.2. Autoregressive components for the 5 series vectors included coefficients of .80, .70, .65, .50 and .40. Error variance components included values of .20, .20, .10, .15, and .15, with cross-lagged coefficients of .10, .10, .15, .10, and .10. A Monte Carlo study revealed that in comparison to frequentist methods, the Bayesian approach provided increased sensitivity for hypothesis testing and detecting Type I error.  相似文献   

19.
An interval estimation procedure for proportion of explained observed variance in latent curve analysis is discussed, which can be used as an aid in the process of choosing between linear and nonlinear models. The method allows obtaining confidence intervals for the R 2 indexes associated with repeatedly followed measures in longitudinal studies. In addition to facilitating evaluation of local model fit, the approach is helpful for purposes of differentiating between plausible models stipulating different patterns of change over time, and in particular in empirical situations characterized by large samples and high statistical power. The procedure is also applicable in cross-sectional studies, as well as with general structural equation models. The method is illustrated using data from a nationally representative study of older adults.  相似文献   

20.
Multivariate heterogenous data with latent variables are common in many fields such as biological, medical, behavioral, and social-psychological sciences. Mixture structural equation models are multivariate techniques used to examine heterogeneous interrelationships among latent variables. In the analysis of mixture models, determination of the number of mixture components is always an important and challenging issue. This article aims to develop a full Bayesian approach with the use of reversible jump Markov chain Monte Carlo method to analyze mixture structural equation models with an unknown number of components. The proposed procedure can simultaneously and efficiently select the number of mixture components and conduct parameter estimation. Simulation studies show the satisfactory empirical performance of the method. The proposed method is applied to study risk factors of osteoporotic fractures in older people.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号