首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Estimating models within the mixture model framework, like latent growth mixture modeling (LGMM) or latent class growth analysis (LCGA), involves making various decisions throughout the estimation process. This has led to a wide variety in how results of latent trajectory analysis are reported. To overcome this issue, using a 4-round Delphi study, we developed Guidelines for Reporting on Latent Trajectory Studies (GRoLTS). The purpose of GRoLTS is to present criteria that should be included when reporting the results of latent trajectory analysis across research fields. We have gone through a systematic process to identify key components that, according to a panel of experts, are necessary when reporting results for trajectory studies. We applied GRoLTS to 38 papers where LGMM or LCGA was used to study trajectories of posttraumatic stress after a traumatic event.  相似文献   

2.
The cohort growth model (CGM) is a method for estimating the parameters of a latent growth model (LGM) based on cross-sectional data. The CGM models the interindividual differences in the growth rate, and it models how subjects’ growth rate is related to their initial status. We derive model identification for the CGM and illustrate, in a simulation study, that the CGM provides unbiased parameter estimates in most simulation conditions. Based on empirical data we compare the estimates of the CGM with the estimates of the LGM. The results were comparable for both models. Although the estimates of the (co)-variances were different, the estimates of both models led to similar conclusions on the developmental change. Finally, we discuss the advantages and limitations of the CGM, and we provide recommendations for its use in empirical research.  相似文献   

3.
Propensity score (PS) analysis aims to reduce bias in treatment effect estimates obtained from observational studies, which may occur due to non-random differences between treated and untreated groups with respect to covariates related to the outcome. We demonstrate how to use structural equation modeling (SEM) for PS analysis to remove selection bias due to latent covariates and estimate treatment effects on latent outcomes. Following the discussion of the design and analysis stages of PS analysis with SEM, an example is presented which uses the Mplus software to analyze data from the 1999 School and Staffing Survey (SASS) and 2000 Teacher Follow-up Survey (TFS) to estimate the effects teacher’s participation in a network of teachers on the teacher’s perception of workload manageability.  相似文献   

4.
Latent growth curve mediation models are increasingly used to assess mechanisms of behavior change. For latent growth mediation model, like any another mediation model, even with random treatment assignment, a critical but untestable assumption for valid and unbiased estimates of the indirect effects is that there should be no omitted variable that confounds indirect effects. One way to address this untestable assumption is to conduct sensitivity analysis to assess whether the inference about an indirect effect would change under varying degrees of confounding bias. We developed a sensitivity analysis technique for a latent growth curve mediation model. We compute the biasing effect of confounding on point and confidence interval estimates of the indirect effects in a structural equation modeling framework. We illustrate sensitivity plots to visualize the effects of confounding on each indirect effect and present an empirical example to illustrate the application of the sensitivity analysis.  相似文献   

5.
Simulation studies involving mixture models inevitably aggregate parameter estimates and other output across numerous replications. A primary issue that arises in these methodological investigations is label switching. The current study compares several label switching corrections that are commonly used when dealing with mixture models. A growth mixture model is used in this simulation study, and the design crosses three manipulated variables—number of latent classes, latent class probabilities, and class separation, yielding a total of 18 conditions. Within each of these conditions, the accuracy of a priori identifiability constraints, a priori training of the algorithm, and four post hoc algorithms developed by Tueller et al.; Cho; Stephens; and Rodriguez and Walker are tested to determine their classification accuracy. Findings reveal that, of all a priori methods, training of the algorithm leads to the most accurate classification under all conditions. In a case where an a priori algorithm is not selected, Rodriguez and Walker’s algorithm is an excellent choice if interested specifically in aggregating class output without consideration as to whether the classes are accurately ordered. Using any of the post hoc algorithms tested yields improvement over baseline accuracy and is most effective under two-class models when class separation is high. This study found that if the class constraint algorithm was used a priori, it should be combined with a post hoc algorithm for accurate classification.  相似文献   

6.
The coding of time in latent curve models has been shown to have important implications in the interpretation of growth parameters. Centering time is often done to improve interpretation but may have consequences for estimated parameters. This article studies the effects of coding and centering time when there is interindividual heterogeneity in time such as when longitudinal responses are dependent on a point of origin that varies between individuals. Using representative examples that differ in their degree of interindividual time heterogeneity, we compare different models based on alternative forms of coding and centering of time to evaluate potential for biased estimates. Recommendations are made for studies marked by heterogeneity in time measures.  相似文献   

7.
This Monte Carlo study investigated the impacts of measurement noninvariance across groups on major parameter estimates in latent growth modeling when researchers test group differences in initial status and latent growth. The average initial status and latent growth and the group effects on initial status and latent growth were investigated in terms of Type I error and bias. The location and magnitude of noninvariance across groups was related to the location and magnitude of bias and Type I error in the parameter estimates. That is, noninvariance in factor loadings and intercepts was associated with the Type I error inflation and bias in the parameter estimates of the slope factor (or latent growth) and the intercept factor (or initial status), respectively. As noninvariance became large, the degree of Type I error and bias also increased. On the other hand, a correctly specified second-order latent growth model yielded unbiased parameter estimates and correct statistical inferences. Other findings and implications on future studies were discussed.  相似文献   

8.
Structured means analysis is a very useful approach for testing hypotheses about population means on latent constructs. In such models, a z test is most commonly used for testing the statistical significance of the relevant parameter estimates or of the differences between parameter estimates, where a z value is computed based on the asymptotic standard error estimate associated with the parameter of interest. In the current article, a series of population analyses demonstrate that the z tests for latent mean structure parameters or, more directly, the standard error estimates upon which those z tests are based are, not invariant to how factors are scaled. As such, circumstances exist in which latent mean inference is compromised solely as a result of scaling decisions. This problem is illustrated in the context of between-subjects (i.e., multisample) latent means models and within-subjects latent means models. Recommendations for practice are also offered.  相似文献   

9.
The effects of misspecifying intercept-covariate interactions in a 4 time-point latent growth model were the focus of this investigation. The investigation was motivated by school growth studies in which students' entry-level skills may affect their rate of growth. We studied the latent interaction of intercept and a covariate in predicting growth with respect to 3 factors: sample size (100, 200, and 500), 4 levels of magnitude of interaction effect, and 3 correlation values between intercept and covariate (.3, .5, and .7). Correctly specified models were examined to determine power and Type I error rates, and misspecified models were examined to evaluate the effects on power, parameter estimation, bias, and fit indexes. Results showed that, under correctly specified models, power increased as expected with increasing sample size, larger magnitude of interaction, and larger intercept-covariate correlation. Under misspecification, omitting a non-null interaction results in significant change in the estimation of the direct effects of both covariate and intercept in both magnitude and direction, with results dependent on sign of parameter values for main effects and interaction. Including a spurious interaction does not affect estimation of direct effects of intercept and covariate but does increase standard errors. The primary problem in ignoring a non-null interaction lies in misinterpretation of the model, as interactions yield important insights into the nature of the processes being studied.  相似文献   

10.
The purpose of this study is to provide guidance on a process for including latent class predictors in regression mixture models. We first examine the performance of current practice for using the 1-step and 3-step approaches where the direct covariate effect on the outcome is omitted. None of the approaches show adequate estimates of model parameters. Given that Step 1 of the 3-step approach shows adequate results in class enumeration, we suggest using an alternative approach: (a) decide the number of latent classes without predictors of latent classes, and (b) bring the latent class predictors into the model with the inclusion of hypothesized direct covariate effects. Our simulations show that this approach leads to good estimates for all model parameters. The proposed approach is demonstrated by using empirical data to examine the differential effects of family resources on students’ academic achievement outcome. Implications of the study are discussed.  相似文献   

11.
This study introduces three growth modeling techniques: latent growth modeling (LGM), hierarchical linear modeling (HLM), and longitudinal profile analysis via multidimensional scaling (LPAMS). It compares the multilevel growth parameter estimates and potential predictor effects obtained using LGM, HLM, and LPAMS. The purpose of this multilevel growth analysis is to alert applied researchers to selected analytical issues that are required for consideration in decisions to apply one of these three approaches to longitudinal academic achievement studies. The results indicated that there were no significant distinctions on either mean growth parameter estimates or on the effects of potential predictors to growth factors at both the student and school levels. However, the study also produced equivocal findings on the statistical testing of variance and covariance growth parameter estimates. Other practical issues pertaining to the three growth modeling methods are also discussed.  相似文献   

12.
Latent growth modeling (LGM) is a popular and flexible technique that may be used when data are collected across several different measurement occasions. Modeling the appropriate growth trajectory has important implications with respect to the accurate interpretation of parameter estimates of interest in a latent growth model that may impact educational policy decisions. A Monte Carlo simulation study was conducted to examine the accuracy of six information-based criteria (i.e., AIC, CAIC, AICC, BIC, nBIC, and HQIC) when selecting among various growth trajectories modeled using LGM under different sample size, number of time points, and growth trajectory scenarios. The accuracy of the information criteria generally improved as sample size increased. The cubic and linear growth models were distinguished most accurately by the information criteria. All of the nonlinear models were more easily distinguished as the number of time points increased. The comparative performance of the six information criteria was dependent upon the manipulated conditions. Implications of the findings are discussed.  相似文献   

13.
Growth mixture models combine latent growth curve models and finite mixture models to examine the existence of latent classes that follow distinct developmental patterns. Analyses based on these models are becoming quite common in social and behavioral science research because of recent advances in computing, the availability of specialized statistical programs, and the ease of programming. In this article, we show how mixture models can be fit to examine the presence of multiple latent classes by algorithmically grouping or clustering individuals who follow the same estimated growth trajectory based on an evaluation of individual case residuals. The approach is illustrated using empirical longitudinal data along with an easy to use computerized implementation.  相似文献   

14.
Growth mixture modeling (GMM) is a useful statistical method for longitudinal studies because it includes features of both latent growth modeling (LGM) and finite mixture modeling. This Monte Carlo simulation study explored the impact of ignoring 3 types of time series processes (i.e., AR(1), MA(1), and ARMA(1,1)) in GMM and manipulated the separation of the latent classes, the strength of the time series process, and whether the errors conformed to the time series process in 1 or 2 latent classes. The results showed that omitting time series processes resulted in more serious bias in parameter estimation as the distance between classes increased. However, when the class distances were small, ignoring time series processes contributed to the selection of the correct number of classes. When the GMM models correctly specified the time series process, only models with an AR(1) time series process produced unbiased parameter estimates in most conditions. It was also found that among design factors manipulated, the distance between classes prominently affected the identification of the number of classes and parameter estimation.  相似文献   

15.
Structural equation modeling (SEM) is now a generic modeling framework for many multivariate techniques applied in the social and behavioral sciences. Many statistical models can be considered either as special cases of SEM or as part of the latent variable modeling framework. One popular extension is the use of SEM to conduct linear mixed-effects modeling (LMM) such as cross-sectional multilevel modeling and latent growth modeling. It is well known that LMM can be formulated as structural equation models. However, one main difference between the implementations in SEM and LMM is that maximum likelihood (ML) estimation is usually used in SEM, whereas restricted (or residual) maximum likelihood (REML) estimation is the default method in most LMM packages. This article shows how REML estimation can be implemented in SEM. Two empirical examples on latent growth model and meta-analysis are used to illustrate the procedures implemented in OpenMx. Issues related to implementing REML in SEM are discussed.  相似文献   

16.
We evaluate the performance of the most common estimators of latent Markov (LM) models with covariates in the presence of direct effects of the covariates on the indicators of the LM model. In LM modeling it is common practice not to model such direct effects, ignoring the consequences that might have on the overall model fit and the parameters of interest. However, in the general literature about latent variable modeling it is well known that unmodeled direct effects can severely bias the parameter estimates of the model at hand. We evaluate how the presence of direct effects in?uences the bias and efficiency of the 3 most common estimators of LM models, the 1-step, 2-step, and 3-step approaches. Furthermore, we propose amendments (that were thus far not used in the context of LM modeling) to the 2- and 3-step approaches that make it possible to account for direct effects and eliminate bias as a consequence. This is done by modeling the (possible) direct effects in the first step of the stepwise estimation procedures. We evaluate the proposed estimators through an extensive simulation study, and illustrate them via a real data application. Our results show, first, that the augmented 2-step and 3-step approaches are unbiased and efficient estimators of LM models with direct effects. Second, ignoring the direct effects leads to biased estimates with all existing estimators, the 1-step approach being the most sensitive.  相似文献   

17.
Measures of classroom climate such as classroom goal structures are often assessed through students’ perceptions; the aggregated means within classrooms are then sometimes labeled as “classroom characteristics.” The validity of these constructs is limited by the reliability of the measure at both the student and classroom level; yet, few studies accurately assess reliability when multilevel models are used. We demonstrate the use of a three-level hierarchical linear model to estimate latent true score measures of students’ perceptions of goal structures, appropriately adjusted for their nested structure. To investigate the distinctiveness of goal structures from teacher characteristics, we examined the inter-correlations among the student and classroom level variables, and predictors of each.  相似文献   

18.
The precision of estimates in many statistical models can be expressed by a confidence interval (CI). CIs based on standard errors (SEs) are common in practice, but likelihood-based CIs are worth consideration. In comparison to SEs, likelihood-based CIs are typically more difficult to estimate, but are more robust to model (re)parameterization. In latent variable models, some parameters might take on values outside of their interpretable range. Therefore, it is desirable to place a bound to keep the parameter interpretable. For likelihood-based CI, a correction is needed when a parameter is bounded. The correction is known (Wu & Neale, 2012), but is difficult to implement in practice. A novel automatic implementation that is simple for an applied researcher to use is introduced. A simulation study demonstrates the accuracy of the correction using a latent growth curve model and the method is illustrated with a multilevel confirmatory factor analysis.  相似文献   

19.
In longitudinal studies, investigators often measure multiple variables at multiple time points and are interested in investigating individual differences in patterns of change on those variables. Furthermore, in behavioral, social, psychological, and medical research, investigators often deal with latent variables that cannot be observed directly and should be measured by 2 or more manifest variables. Longitudinal latent variables occur when the corresponding manifest variables are measured at multiple time points. Our primary interests are in studying the dynamic change of longitudinal latent variables and exploring the possible interactive effect among the latent variables.

Much of the existing research in longitudinal studies focuses on studying change in a single observed variable at different time points. In this article, we propose a novel latent curve model (LCM) for studying the dynamic change of multivariate manifest and latent variables and their linear and interaction relationships. The proposed LCM has the following useful features: First, it can handle multivariate variables for exploring the dynamic change of their relationships, whereas conventional LCMs usually consider change in a univariate variable. Second, it accommodates both first- and second-order latent variables and their interactions to explore how changes in latent attributes interact to produce a joint effect on the growth of an outcome variable. Third, it accommodates both continuous and ordered categorical data, and missing data.  相似文献   

20.
In this article, we present an approach for comprehensive analysis of the effectiveness of interventions based on nonlinear structural equation mixture models (NSEMM). We provide definitions of average and conditional effects and show how they can be computed. We extend the traditional moderated regression approach to include latent continous and discrete (mixture) variables as well as their higher order interactions, quadratic or more general nonlinear relationships. This new approach can be considered a combination of the recently proposed EffectLiteR approach and the NSEMM approach. A key advantage of this synthesis is that it gives applied researchers the opportunity to gain greater insight into the effectiveness of the intervention. For example, it makes it possible to consider structural equation models for situations where the treatment is noneffective for extreme values of a latent covariate but is effective for medium values, as we illustrate using an example from the educational sciences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号