首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study adopted a multidimensional approach to performance prediction within Olympic distance cross-country mountain biking (XCO-MTB). Twelve competitive XCO-MTB cyclists (VO2max 60.8 ± 6.7 ml · kg?1 · min?1) completed an incremental cycling test, maximal hand grip strength test, cycling power profile (maximal efforts lasting 6–600 s), decision-making test and an individual XCO-MTB time-trial (34.25 km). A hierarchical approach using multiple linear regression analyses was used to develop predictive models of performance across 10 circuit subsections and the total time-trial. The strongest model to predict overall time-trial performance achieved prediction accuracy of 127.1 s across 6246.8 ± 452.0 s (adjusted R2 = 0.92; P < 0.01). This model included VO2max relative to total cycling mass, maximal mean power across 5 and 30 s, peak left hand grip strength, and response time for correct decisions in the decision-making task. A range of factors contributed to the models for each individual subsection of the circuit with varying predictive strength (adjusted R2: 0.62–0.97; P < 0.05). The high prediction accuracy for the total time-trial supports that a multidimensional approach should be taken to develop XCO-MTB performance. Additionally, individual models for circuit subsections may help guide training practices relative to the specific trail characteristics of various XCO-MTB circuits.  相似文献   

2.
Abstract

The purpose of this study was to assess the effects of heavy resistance, explosive resistance, and muscle endurance training on neuromuscular, endurance, and high-intensity running performance in recreational endurance runners. Twenty-seven male runners were divided into one of three groups: heavy resistance, explosive resistance or muscle endurance training. After 6 weeks of preparatory training, the groups underwent an 8-week resistance training programme as a supplement to endurance training. Before and after the 8-week training period, maximal strength (one-repetition maximum), electromyographic activity of the leg extensors, countermovement jump height, maximal speed in the maximal anaerobic running test, maximal endurance performance, maximal oxygen uptake ([Vdot]O2max), and running economy were assessed. Maximal strength improved in the heavy (P = 0.034, effect size ES = 0.38) and explosive resistance training groups (P = 0.003, ES = 0.67) with increases in leg muscle activation (heavy: P = 0.032, ES = 0.38; explosive: P = 0.002, ES = 0.77). Only the heavy resistance training group improved maximal running speed in the maximal anaerobic running test (P = 0.012, ES = 0.52) and jump height (P = 0.006, ES = 0.59). Maximal endurance running performance was improved in all groups (heavy: P = 0.005, ES = 0.56; explosive: P = 0.034, ES = 0.39; muscle endurance: P = 0.001, ES = 0.94), with small though not statistically significant improvements in [Vdot]O2max (heavy: ES = 0.08; explosive: ES = 0.29; muscle endurance: ES = 0.65) and running economy (ES in all groups < 0.08). All three modes of strength training used concurrently with endurance training were effective in improving treadmill running endurance performance. However, both heavy and explosive strength training were beneficial in improving neuromuscular characteristics, and heavy resistance training in particular contributed to improvements in high-intensity running characteristics. Thus, endurance runners should include heavy resistance training in their training programmes to enhance endurance performance, such as improving sprinting ability at the end of a race.  相似文献   

3.
Purpose: Several studies have demonstrated that physiological variables predict cycling endurance performance. However, it is still unclear whether the predictors will change over different performance durations. The aim of this study was to assess the correlations between physiological variables and cycling time trials with different durations. Methods: Twenty trained male cyclists (maximal oxygen uptake [VO2max] = 60.5 ± 5.6 mL/kg/min) performed 4 separate experimental trials during a 2-week period. Cyclists initially completed an incremental exercise test until volitional exhaustion followed by 3 maximal cycling time trials on separate days. Each time trial consisted of 3 different durations: 5 min, 20 min, and 60 min performed in a randomized order. Results: The main results showed that the physiological measures strongly correlated with long cycling performances rather than short and medium time trials. The time-trial mean power output was moderately high to highly correlated with peak power output and VO2max (r = .61–.87, r = .72–.89, respectively), and was moderately to highly correlated with the lactate threshold Dmax method and second ventilatory threshold (r = .52–.75, r = .55–.82, respectively). Conclusions: Therefore, trained cyclists should develop maximal aerobic power irrespective of the duration of time trial, as well as enhancements in metabolic thresholds for long-duration time trials.  相似文献   

4.
Abstract

The purpose of this study was to compare changes in aerobic condition, strength, and muscular endurance following 8 weeks of endurance rowing alone or in combination with weight-training. Twenty-two elite rowers were assigned to (1) rowing (n = 10, 250–270 km · week?1) or (2) rowing (n = 12, 190–210 km · week?1) plus four weight-training sessions each week. Pre and post mean and standardized effect-size (ES) differences in aerobic condition (watts at 4 mmol · L?1) and strength (isometric pull, N), prone bench-pull (6-repetition maximum, 6-RM), 5- and 30-repetition leg-press and 60-repetition seated-arm-pull (J, performed on a dynamometer) normalized by body mass and log-transformed were analysed, after adjusting for gender. The standardized differences between groups were trivial for aerobic condition (ES [±90% CI] = 0.15; ±0.28, P = 0.37) and prone bench-pull (ES = 0.27; ±0.33, P = 0.18), although a moderate positive benefit in favour of rowing only was observed for the seated-arm-pull (ES = 0.42; ±0.4, P = 0.08). Only the weight-training group improved isometric pull (12.4 ± 8.9%, P < 0.01), 5-repetition (4.0 ± 5.7%, P < 0.01) and 30-repetition (2.4 ± 5.4%, P < 0.01) leg-press. In conclusion, while gains in aerobic condition and upper-body strength were comparable to extensive endurance rowing, weight-training led to moderately greater lower-body muscular-endurance and strength gains.  相似文献   

5.
This study evaluated the changes in ratios of different intensity (rating of perceived exertion; RPE, heart rate; HR, power output; PO) and load measures (session-RPE; sRPE, individualized TRIMP; iTRIMP, Training Stress Score?; TSS) in professional cyclists. RPE, PO and HR data was collected from twelve professional cyclists (VO2max 75 ± 6 ml?min?kg?1) during a two-week baseline training period and during two cycling Grand Tours. Subjective:objective intensity (RPE:HR, RPE:PO) and load (sRPE:iTRIMP, sRPE:TSS) ratios and external:internal intensity (PO:HR) and load (TSS:iTRIMP) ratios were calculated for every session. Moderate to large increases in the RPE:HR, RPE:PO and sRPE:TSS ratios (d = 0.79–1.79) and small increases in the PO:HR and sRPE:iTRIMP ratio (= 0.21–0.41) were observed during Grand Tours compared to baseline training data. Differences in the TSS:iTRIMP ratio were trivial to small (= 0.03–0.27). Small to moderate week-to-week changes (d = 0.21–0.63) in the PO:HR, RPE:PO, RPE:HR, TSS:iTRIMP, sRPE:iTRIMP and sRPE:TSS were observed during the Grand Tour. Concluding, this study shows the value of using ratios of intensity and load measures in monitoring cyclists. Increases in ratios could reflect progressive fatigue that is not readily detected by changes in solitary intensity/load measures.  相似文献   

6.
Abstract

Elite badminton requires muscular endurance combined with appropriate maximal and explosive muscle strength. The musculature of the lower extremities is especially important in this context since rapid and forceful movements with the weight of the body are performed repeatedly throughout a match. In the present study, we examined various leg-strength parameters of 35 male elite badminton players who had been performing resistance exercises as part of their physical training for several years. The badminton players were compared with an age-matched reference group, the members of whom were physically active on a recreational basis, and to the same reference group after they had performed resistance training for 14 weeks. Maximal muscle strength of the knee extensor (quadriceps) and flexor muscles (hamstrings) was determined using isokinetic dynamometry. To measure explosive muscle strength, the contractile rate of force development was determined during maximal isometric muscle contractions. In general, the badminton players showed greater maximal muscle strength and contractile rate of force development than the reference group: mean quadriceps peak torque during slow concentric contraction: 3.69 Nm · kg?1, s=0.08 vs. 3.26 Nm · kg?1, s=0.8 (P<0.001); mean hamstring peak torque during slow concentric contraction: 1.86 Nm · kg?1, s=0.04 vs. 1.63 Nm · kg?1, s=0.04 (P<0.001); mean quadriceps rate of force development at 100 ms: 24.4 Nm · s?1·kg?1, s=0.5 vs. 22.1 Nm·s?1 · kg?1, s=0.6 (P<0.05); mean hamstring rate of force development at 100 ms: 11.4 Nm · s?1·kg?1, s=0.3 vs. 8.9 Nm · s?1 · kg?1, s=0.4 (P<0.05). However, after 14 weeks of resistance training the reference group achieved similar isometric and slow concentric muscle strength as the badminton players, although the badminton players still had a higher isometric rate of force development and muscle strength during fast (240° · s?1) quadriceps contractions. Large volumes of concurrent endurance training could have attenuated the long-term development of maximal muscle strength in the badminton players. The badminton players had a higher contractile rate of force development than the reference group before and after resistance training. Greater explosive muscle strength in the badminton players might be a physiological adaptation to their badminton training.  相似文献   

7.
ABSTRACT

The aims of this study were to analyse the optimal cadence for peak power production and time to peak power in bicycle motocross (BMX) riders. Six male elite BMX riders volunteered for the study. Each rider completed 3 maximal sprints at a cadence of 80, 100, 120 and 140 revs · min?1 on a laboratory Schoberer Rad Messtechnik (SRM) cycle ergometer in isokinetic mode. The riders’ mean values for peak power and time of power production in all 3 tests were recorded. The BMX riders produced peak power (1105 ± 139 W) at 100 revs · min?1 with lower peak power produced at 80 revs · min?1 (1060 ± 69 W, (F(2,15) = 3.162; P = .266; η2 = 0.960), 120 revs · min?1 (1077 ± 141 W, (F(2,15) = 4.348; P = .203; η2 = 0.970) and 140 revs · min?1 (1046 ± 175 W, (F(2,15) = 12.350; P = 0.077; η2 = 0.989). The shortest time to power production was attained at 120 revs · min?1 in 2.5 ± 1.07 s. Whilst a cadence of 80 revs · min?1 (3.5 ± 0.8 s, (F(2,15) = 2.667; P = .284; η2 = 0.800) 100 revs · min?1 (3.00 ± 1.13 s, (F(2,15) = 24.832; P = .039; η2 = 0.974) and 140 revs · min?1 (3.50 ± 0.88 s, (F(2,15) = 44.167; P = .006; η2 = 0.967)) all recorded a longer time to peak power production. The results indicate that the optimal cadence for producing peak power output and reducing the time to peak power output are attained at comparatively low cadences for sprint cycling events. These findings could potentially inform strength and conditioning training to maximise dynamic force production and enable coaches to select optimal gear ratios.  相似文献   

8.
Aim: The aim of this study was to examine the relationship between ventilatory adaptation and performance during altitude training at 2700?m. Methods: Seven elite cyclists (age: 21.2?±?1.1?yr, body mass: 69.9?±?5.6?kg, height 176.3?±?4.9?cm) participated in this study. A hypoxic ventilatory response (HVR) test and a submaximal exercise test were performed at sea level prior to the training camp and again after 15 d at altitude (ALT15). Ventilation (VE), end-tidal carbon-dioxide partial pressure (PETCO2) and oxyhaemoglobin saturation via pulse oximetry (SpO2) were measured at rest and during submaximal cycling at 250?W. A hill climb (HC) performance test was conducted at sea level and after 14 d at altitude (ALT14) using a road of similar length (5.5–6?km) and gradient (4.8–5.3%). Power output was measured using SRM cranks. Average HC power at ALT14 was normalised to sea level power (HC%). Multiple regression was used to identify significant predictors of performance at altitude. Results: At ALT15, there was a significant increase in resting VE (10.3?±?1.9 vs. 12.2?±?2.4?L·min?1) and HVR (0.34?±?0.24 vs. 0.71?±?0.49?L·min?1·%?1), while PETCO2 (38.4?±?2.3 vs. 32.1?±?3.3?mmHg) and SpO2 (97.9?±?0.7 vs. 94.0?±?1.7%) were reduced (P?VE at altitude as significant predictors of HC% (adjusted r2?=?0.913; P?=?0.003). Conclusions: Ventilatory acclimatisation occurred during a 2 wk altitude training camp in elite cyclists and a higher HVR was associated with better performance at altitude, relative to sea level. These results suggest that ventilatory acclimatisation is beneficial for cycling performance at altitude.  相似文献   

9.
The purpose of this study was to compare the pedalling technique in road cyclists of different competitive levels. Eleven professional, thirteen elite and fourteen club cyclists were assessed at the beginning of their competition season. Cyclists’ anthropometric characteristics and bike measurements were recorded. Three sets of pedalling (200, 250 and 300 W) on a cycle ergometer that simulated their habitual cycling posture were performed at a constant cadence (~90 rpm), while kinetic and kinematic variables were registered. The results showed no differences on the main anthropometric variables and bike measurements. Professional cyclists obtained higher positive impulse proportion (1.5–3.3% and P < 0.05), mainly due to a lower resistive torque during the upstroke (15.4–28.7% and P < 0.05). They also showed a higher ankle range of movement (ROM, 1.1–4.0° and P < 0.05). Significant correlations (P < 0.05) were found between the cyclists’ body mass and the kinetic variables of pedalling: positive impulse proportion (r = ?0.59 to ?0.61), minimum (r = ?0.59 to ?0.63) and maximum torques (r = 0.35–0.47). In conclusion, professional cyclists had better pedalling technique than elite and club cyclists, because they opted for enhancing pulling force at the recovery phase to sustain the same power output. This technique depended on cycling experience and level of expertise.  相似文献   

10.
The hypothesis that endurance training impairs sprinting ability was examined. Eight male subjects undertook a 30‐s sprint test on a cycle ergometer before and after 6 weeks of cycling training for endurance. Maximum oxygen uptake (VO2 max) and submaximum endurance were determined to evaluate the influence of the training regimen on endurance performance. Endurance was defined as the time to exhaustion at a relative exercise intensity of 85% VO2 max. Maximum oxygen uptake was increased by 18% post‐training (3.29 ± 0.291 min–1 versus 3.89±0.491 min–1; P <0.01), but endurance at the same absolute work rate as pre‐training was increased by more than 200% (32.2 ±11.4 min versus 97.8 + 27.3 min; P <0.01). These improvements were accompanied by changes in the cardiovascular and metabolic responses to standard, submaximum exercise. Despite the improvements in endurance, neither performance during the cycle sprint test nor the increase in blood lactate concentration during the sprint was influenced by endurance training. For short‐term cycling training, these findings reinforce the concept of training specificity whilst demonstrating that decrements in sprint performance are not a necessary consequence of improved endurance.  相似文献   

11.
Abstract

The purpose of this study was to assess the agreement between two mobile cycle ergometer systems for recording high-intensity, intermittent power output. Twelve trained male cyclists (age 31.4 ± 9.8 years) performed a single 3 min intermittent cycle test consisting of 12 all-out efforts, separated by periods of passive recovery ranging from 5 to 15 s. Power output was recorded using a Polar S710 heart rate monitor and power sensor kit and an SRM Powercrank system for each test. The SRM used torque and angular velocity to calculate power, while the S710 used chain speed and vibration to calculate power. Significant differences (P < 0.05) in power were found at 8 of the 12 efforts. A significant difference (P = 0.001) was also found when power was averaged over all 12 intervals. Mean power was 556 ± 102 W and 446 ± 61 W for the SRM and S710 respectively. The S710 underestimated power by an average of 23% with random errors of ?/÷ 24% when compared with the SRM. Random errors ranged from 36% to 141% with a median of 51%. The results indicate there was little agreement between the two systems and that the Polar S710 did not provide a valid measure of power during intermittent cycling activity when compared with the SRM. Power recorded by the S710 system was influenced greatly by chain vibration and sampling rates.  相似文献   

12.
ABSTRACT

This study aimed to assess the relationship between an uphill time-trial (TT) performance and both aerobic and anaerobic parameters obtained from laboratory tests. Fifteen cyclists performed a Wingate anaerobic test, a graded exercise test (GXT) and a field-based 20-min TT with 2.7% mean gradient. After a 5-week non-supervised training period, 10 of them performed a second TT for analysis of pacing reproducibility. Stepwise multiple regressions demonstrated that 91% of TT mean power output variation (W kg?1) could be explained by peak oxygen uptake (ml kg?1.min?1) and the respiratory compensation point (W kg?1), with standardised beta coefficients of 0.64 and 0.39, respectively. The agreement between mean power output and power at respiratory compensation point showed a bias ± random error of 16.2 ± 51.8 W or 5.7 ± 19.7%. One-way repeated-measures analysis of variance revealed a significant effect of the time interval (123.1 ± 8.7; 97.8 ± 1.2 and 94.0 ± 7.2% of mean power output, for epochs 0–2, 2–18 and 18–20 min, respectively; P < 0.001), characterising a positive pacing profile. This study indicates that an uphill, 20-min TT-type performance is correlated to aerobic physiological GXT variables and that cyclists adopt reproducible pacing strategies when they are tested 5 weeks apart (coefficients of variation of 6.3; 1 and 4%, for 0–2, 2–18 and 18–20 min, respectively).  相似文献   

13.
Abstract

The aim of this study was to quantify the physiological loads of programmed “pre-season” and “in-season” training in professional soccer players. Data for players during each period were included for analysis (pre-season, n = 12; in-season, n = 10). We monitored physiological loading of training by measuring heart rate and rating of perceived exertion (RPE). Training loads were calculated by multiplying RPE score by the duration of training sessions. Each session was sub-categorized as physical, technical/tactical, physical and technical/tactical training. Average physiological loads in pre-season (heart rate 124 ± 7 beats · min?1; training load 4343 ± 329 Borg scale · min) were higher compared with in-season (heart rate 112 ± 7 beats · min?1; training load 1703 ± 173 Borg scale · min) (P < 0.05) and there was a greater proportion of time spent in 80–100% maximum heart rate zones (18 ± 2 vs. 5 ± 2%; P < 0.05). Such differences appear attributable to the higher intensities in technical/tactical sessions during pre-season (pre-season: heart rate 137 ± 8 beats · min?1; training load 321 ± 23 Borg scale · min; in-season: heart rate 114 ± 9 beats · min?1; training load 174 ± 27 Borg scale · min; P < 0.05). These findings demonstrate that pre-season training is more intense than in-season training. Such data indicate that these adjustments in load are a direct attempt to deliver training to promote specific training adaptations.  相似文献   

14.
Abstract

Power output and heart rate were monitored for 11 months in one female ([Vdot]O2max: 71.5 mL · kg?1 · min?1) and ten male ([Vdot]O2max: 66.5 ± 7.1 mL · kg?1 · min?1) cyclists using SRM power-meters to quantify power output and heart rate distributions in an attempt to assess exercise intensity and to relate training variables to performance. In total, 1802 data sets were divided into workout categories according to training goals, and power output and heart rate intensity zones were calculated. The ratio of mean power output to respiratory compensation point power output was calculated as an intensity factor for each training session and for each interval during the training sessions. Variability of power output was calculated as a coefficient of variation. There was no difference in the distribution of power output and heart rate for the total season (P = 0.15). Significant differences were observed during high-intensity workouts (P < 0.001). Performance improvements across the season were related to low-cadence strength workouts (P < 0.05). The intensity factor for intervals was related to performance (P < 0.01). The variability in power output was inversely associated with performance (P < 0.01). Better performance by cyclists was characterized by lower variability in power output and higher exercise intensities during intervals.  相似文献   

15.
Abstract

The goal of this study was to investigate the effects of different durations of skin temperature manipulation on pacing patterns and performance during a 15-km cycling time trial. Nineteen well-trained men completed three 15-km cycling time trials in 18°C and 50% relative humidity with 4.5-km (short-heat), 9.0-km (long-heat) or without (control) radiant heat exposure applied by infrared heaters after 1.5 km in the time trial. During the time trials, power output, mean skin temperature, rectal temperature, heart rate and rating of perceived exertion were assessed. The radiant heat exposure resulted in higher mean skin temperature during the time trial for short-heat (35.0 ± 0.6°C) and long-heat (35.3 ± 0.5°C) than for control (32.5 ± 1.0°C; P < 0.001), whereas rectal temperature was similar (P = 0.55). The mean power output was less for short-heat (273 ± 8 W; P = 0.001) and long-heat (271 ± 9 W; P = 0.02) than for control (287 ± 7 W), but pacing patterns did not differ (P = 0.55). Heart rate was greatest in control (177 ± 9 beats · min?1; P < 0.001), whereas the rating of perceived exertion remained similar. We concluded that a radiant heat exposure and associated higher skin temperature reduced overall performance, but did not modify pacing pattern during a 15-km cycling time trial, regardless of the duration of the exposure.  相似文献   

16.
Abstract

Untrained subjects can display diverse strength gain following an identical period of resistance exercise. In this investigation, 28 untrained males completed 16-weeks of resistance exercise, comprising 4-weeks familiarisation, and 12-weeks of heavy-load (80–85%) activity. High and low responders were identified by the Δ1RM (Δ one repetition maximum) observed following familiarisation (25.1 ± 1.4%, 9.5 ± 1.4%, P < 0.0001) and differences in electromyographic root mean square amplitude (ΔEMGRMS 29.5 ± 8.3%, 2.4 ± 6.0%, P = 0.0140), and habitual and occupational activity patterns were observed between these respective groups. The strength gain (P < 0.0001) observed within high (29.6 ± 1.7%) and low (31.4 ± 2.7%) responding groups was similar during the heavy-load phase, yet ΔEMGRMS increased (P = 0.0048) only in low responders (31.5 ± 9.3%). Retrospectively, differences (P < 0.0001) in baseline 1RM strength of high- (19.7 ± 0.9 kg) and low-responding (15.6 ± 0.7 kg) groups were identified, and a strong negative correlation with Δ1RM after 16-weeks (r = ?0.85) was observed. As such, baseline 1RM strength provided a strong predicative measure of strength adaptation. The ΔEMGRMS suggests strength variability within high and low responders may be attributed to neural adaptation. However, differences in habitual endurance and occupational physical activity suggests one should consider screening not only recent resistance training, but also other modes of physical activity during participant recruitment.  相似文献   

17.
An anthropometric analysis was conducted on 35 elite male Australian track cyclists having a mean age of 22.6 years and who had been competing on average for 9 years. The relationship of anthropometric parameters to both bicycle saddle height and cycling performance was also investigated. Subjects were allocated, for purposes of comparison, to an endurance or sprint group on the basis of their competitive event. The group members in total were ectomorphic mesomorphs of height 178±4.8 cm and weight 72.5 ±6.6 kg on average. Percentage of saddle height to lower limb length averaged 99±1.6%, and significant correlations existed between strength and both body mass (r=0.57) and thigh girth (r = 0.55). No significant correlation was seen between any anthropometric parameter and performance in an individual event. Cyclists in the sprint group were heavier (76.2 ± 7.4 vs. 70.0 ± 4.7 kg, P<0.01) and stronger (258 ± 44.4 vs. 216 ± 30.5 Nm, P<0.01), and had larger chest (98.2 ± 6.2 vs. 92.4 ± 2.9 cm, P<0.01), arm (33.0±2.2 vs. 30.7± 1.6 cm, P<0.01), thigh (57.5 ± 3.4 vs. 54.3 ± 2.5 cm, P<0.01) and calf girths (37.8±1.7 vs. 36.2±1.9 cm, P<0.05) than cyclists in the endurance group. They were also more mesomorphic (5.3 ± 0.7 vs. 4.7 ± 0.8, P<0.05) and less ectomorphic (2.3 ± 0.9 vs. 2.9±0.6, P<0.05) than the endurance cyclists.  相似文献   

18.
19.
We conducted a systematic literature review and meta-analysis to assess the chronic effects of the sequence of concurrent strength and endurance training on selected important physiological and performance parameters, namely lower body 1 repetition maximum (1RM) and maximal aerobic capacity (VO2max/peak). Based on predetermined eligibility criteria, chronic effect trials, comparing strength-endurance (SE) with endurance-strength (ES) training sequence in the same session were included. Data on effect sizes, sample size and SD as well other related study characteristics were extracted. The effect sizes were pooled using, Fixed or Random effect models as per level of heterogeneity between studies and a further sensitivity analyses was carried out using Inverse Variance Heterogeneity (IVHet) models to adjust for potential bias due to heterogeneity. Lower body 1RM was significantly higher when strength training preceded endurance with a pooled mean change of 3.96 kg (95%CI: 0.81 to 7.10 kg). However, the training sequence had no impact on aerobic capacity with a pooled mean difference of 0.39 ml.kg.min?1 (95%CI: ?1.03 to 1.81 ml.kg.min?1). Sequencing strength training prior to endurance in concurrent training appears to be beneficial for lower body strength adaptations, while the improvement of aerobic capacity is not affected by training order.  相似文献   

20.
Abstract

In this study, video and force analysis techniques were used to distinguish between dragon boat paddlers of different ability. Six elite paddlers (three males, three females) and six sub-elite paddlers (two males, four females) were compared during high-intensity paddling (80–90 strokes · min?1). Video filming was conducted for two-dimensional kinematic analysis and an instrumented paddle was used to collect force data. Paddling efficiency, paddle force characteristics, and paddler kinematic variables were measured. Elite paddlers achieved higher paddling efficiency than sub-elite paddlers (elite: 76 ± 4%; sub-elite: 67 ± 10%; P = 0.080). Elite paddlers also showed higher peak force (elite: 16.3 ± 4.8 N · kg?2/3; sub-elite: 11.4 ± 2.6 N · kg?2/3; P = 0.052), average force (elite: 7.9 ± 2.8 N · kg?2/3; sub-elite: 5.5 ± 1.4 N · kg?2/3; P = 0.084), and impulse (elite: 3.0 ± 0.9 (N · s) · kg?2/3; sub-elite: 1.9 ± 0.4 (N · s) · kg?2/3; P = 0.026) than sub-elite paddlers, but these three results should be viewed with caution due to the small sample size and the unequal number of males and females in the two groups. Superior technique and greater strength enable the elite paddlers to achieve higher paddling efficiency. Paddlers use different joint movement patterns to develop propulsion, which are reflected in variations in the force–time curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号