首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
比例线段的证明在相似形一章中占有重要的位置 ,是否灵活掌握 ,直接影响到后继课程“有关圆的比例线段”的学习 ,所以我们应给以足够的重视 .下面介绍一些常用的作法以供参考 .1 “三点定形法”找出相似三角形找出比例式中 (乘积线段可先化成比例线段 ) ,四条线段所在的两个相似三角形 ,利用相似三角形的性质 (对应边成比例 )得出比例式 .例 1 如图 1 ,己知D是△ABC的边AC上的一点 ,∠ 1 =∠C .求证 :(1 )AB·BD =AD·BC .(2 )AB2 =AC·AD .分析  (1 )要证AB·BD =AD·BC ,即证 ABAD =BCBD,只须证明两比前项 (分子 )两条…  相似文献   

2.
<正>相似三角形是初中数学的核心知识.我们在描述两个三角形相似时,要注意不同的描述有不同的含意.一、若用符号"∽"描述,则各边的对应关系确定,此时相关问题有唯一解例1 已知:如图1,在△ABC和△AED中,AB=6,AC=9,AE=2,△ABC∽△AED.求AD的长.分析与解本题中,对两个三角形相似的描述直接使用相似符号"∽",这时两个相似三角形的各对应点是固定的.即△ABC的顶点A、B、C分别对应△AED的顶点A、E、  相似文献   

3.
<正>相似三角形是初中几何的一个重要内容.而以相似三角形为背景的综合题,一直是中考数学的热点和难点.如何找出所需相似三角形是解决此类问题的关键.本文列举几例,供大家学习参考.例1 如图1,已知平行四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G,若∠B+∠EGC=180°.  相似文献   

4.
相似三角形是在全等三角形的基础上的拓广和发展.因此,学生在学习相似三角形时,会遇到很多困难,在解题中经常会出现一些问题,下面就学生在解相似三角形问题时,出现的错误分类辨析如下,供大家参考.一、盲目套用旧知识例1如图1,在△ABC和△A'B'C'中,AD⊥BC,A'D'⊥B'C',D,D'为垂足.且AB/A'B'=  相似文献   

5.
相似三角形有两个重要性质:(1)相似三角形的周长比等于相似比;(2)相似三角形的面积比等于相似比的平方,性质(2)的解题应用十分广泛,受重视程度较高,而性质(1)的关注度相对偏低.实际上,用相似三角形来解相关的线段问题,有时不必将每条边都求出,直接应用"相似三角形的周长比等于相似比"整体求解,往往可以使解题过程更简洁,下面举例说明,以飨读者.例1证明勾股定理如图1,在Rt△ABC中,∠ACB=90°,求证:a~2+b~2=c~2.证明:D是BC上一点,将Rt△ABC沿AD翻折使点C落在斜边AB上的点E处,则AE=AC=b,BE=c-b,DC=DE,所以BD+DE=BD+DC=a,因为∠BED=∠BCA,  相似文献   

6.
众所周知,相似三角形有不少重要的性质,如相似三角形对应边成比例、对应角相等,等等。然而相似三角形还有一个非常重要的性质却常被人们忽视,即 性质1 相似三角形的相似比等于它们的外接圆(内切圆)的半径之比。 其证明由正弦定理不难得到。 下面略举数例,说明上述性质的应用。 例1 如图,两圆相交于A、B两点,且半径之比为r:R=1:2,AC,AD分别与⊙O_1、⊙O_2相切于点A,求AC/AD及S_(△ABC)/S_(△ABD)之值. 解:∵∠1=∠D,∠2=∠c,∴△ABC∽△ABD.由性质得 AC/AD=r/R=1/2,  相似文献   

7.
解答有关三角形的问题时,常常需要添加适当的辅助线.本文介绍三角形中5种常见辅助线的添加方法.一、延长中线构造全等三角形例1如图1,已知△ABC中,AD是△ABC的中线,AB=8,AC=6,求AD的取值范围.提示:延长AD至A',使A'D=AD,连结BA'.根据“SAS”易证△A'BD≌△AC D,得AC=A'B.这样将A  相似文献   

8.
解决梯形问题经常要根据条件添加辅助线 ,把梯形问题转化为较简单的三角形或平行四边形问题解决 ,使一些分散的条件适当集中 ,再进行解答 .一、延长两腰延长梯形的两腰 ,使它们交于一点 ,可得到两个相似三角形 .例 1 如图 1,在梯形 A BCD中 ,AD∥ BC,EF∥BC,梯形 AEFD的面积与梯形 EBCF的面积相等 .求证 :AD 2 + BC2 =2 EF2 .分析 :条件是两个梯形的面积相等 ,而结论是三线段长的平方关系 ,如果延长两腰交于一点 ,就可得到三个相似的三角形 ,再利用相似三角形的面积比与相似比的关系变形就可得出结论 .证明 :延长 BA、CD使它们…  相似文献   

9.
结论1:已知三角形△ABC为直角三角形,设BC=a、AC=b、AB=c,若AD为斜边BC上的中线,则AD=a/2.对此结论初中生就熟练掌握了,但我们没有深入思考一下,如果说三角形是一般的三角形呢?有没有类似的结论呢?现探究如下:题目1设AD为三角形△ABC的中线,BC=a、AC=b、AB=c,求AD关于a、b、c的关系式.解因为AD为三角形中线,  相似文献   

10.
题如图1,AC是矩形ABCD的一条对角线,线段EF垂直平分AC,交BC于E,交AD于F.已知AB=9,AD=12,AC与EF交于点G,求EF的值.思路1 用相似三角形在Rt△ABC中,运用勾股定理可得AC=15,因为EG上AC,AB上BC,∠ACB为公共角,  相似文献   

11.
人教版2007.9在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系.现分类加以说明.一、延长中线构造全等三角形例1如图1,AD是△ABC的中线,求证:AB AC>2AD.证明:延长AD至E,使AD=DE,连接CE.如图2.∵AD是△ABC的中线,∴BD=CD.又∵∠1=∠2,AD=DE,∴△ABD≌  相似文献   

12.
<正>同学们在七年级下学期学习全等三角形知识时接触过“手拉手”模型,如图1,△ABC和△ADE是共顶点三角形,AB=AC,AD=AE,∠BAC=∠DAE=α,连接BD,CE,则△BAD≌△CAE.在此基础上,到了八年级下学期,在学习了图形的相似后,上述“手拉手”模型就可运用于相似三角形中,如图2,如果将一个三角形放大或缩小后绕着一个顶点进行旋转,这个图形的旋转就是相似变换,得到的两个三角形就是旋转相似三角形,即△ABE∽△ACF.证明如下:  相似文献   

13.
共高三角形的性质:共高三角形的面积比等于对应底边的比.题目:如图1,S△ABD=12BD·h,S△ADC=12DC·h,从而S△ABD S△ADC=12BD·h12DC·h=BD DC.特别地,当AD为△ABC中线时,S△ABD=S△ADC.在相似三角形的学习中,此性质常与相似三角形面积比等于相似比的平方这一性质综合使用,现举两例说明.例1如图2,△ABC与△DEC重叠的情形,其中E在BC上,AC交DE于F点,且AB//DE.若△ABC与△DEC的面积相等,  相似文献   

14.
相似三角形是初中数学的重要内容之一,且应用广泛,下面通过典型例题归纳如何构造相似三角形,以及辅助线的作法,供大家参考.1添加平行线构造相似三角形证明线段成比例,图中没有相似形时,一般可以通过作平行线构造相似三角形.例1如图1,在△ABC中,点D是AC边上一点,(AD)/(DC)=1/2,点E是BD的中点,AE的延长线交BC于点F,求  相似文献   

15.
1.构造相似三角形例1 如图1,在直角梯形ABCD 中,AB=7,AD=2,BC=3,如果边 AB上的点P使得以P、A、D为顶点的三角形和以P、B、C为顶点的三角形相似,那么,这样的点P有( )个. (A)1. (B)2. (C)3. (D)4.  相似文献   

16.
一、通过“三点定位”找相似  如果所证比例线段中的两个前项与两个后项分别能确定一个三角形 ,或者每个比的前后项分别能确定一个三角形 ,那么只需证明这两个三角形相似就可以了。前者称为“横向定位法”,后者称为“纵向定位法”,这种寻找相似三角形的方法是最基本 ,也是最常用的方法。  例 1 .如右图 ,AD是△ ABC的高 ,AE是△ ABC的外接圆直径。求证 :AB· AC=AE· AD。分析 :欲证 AB·AC=AE·AD,需证 ABAE=ADAC。由“横向定位”法可知需证△ ABD∽△AEC,作辅助线连结 EC,即可证明 ;由“纵向定位法”可知需证△ ABE…  相似文献   

17.
考测点导航 1.熟练掌握相似三角形的判定和性质; 2.正确、迅速进行平面图形中有关线段的计算和证明。典型题点击一、如图10-9,梯形ABCD中,AD∥BC,∠ABC=90°,对角线AC⊥BD于P点,已知AD:BC=3:4,则BD:AC的值是_______。  相似文献   

18.
首先介绍一个有关的常用图形:如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.由相似三角形易得CD2=AD·BD,AC2=AD·AB,BC2=BD·AB.练习1.在正方形ABCD中,AE=1/4AD,E在AD上.G是AB的中点,GF⊥EC,垂足为F.求证:GF2=CF·EF.(提示:连接EG,CG.通过证△AEG(?)△BGC,得  相似文献   

19.
在两个三角形不相似,图中也没有平行线的情况下,要获得比例线段,就应适当添加平行线.现以两道中考题为例,说明添加辅助平行线的规律. 例1 如图1,△ABC中,AD是BC边上的中线,F是AD上的一点,且AF:FD=1:5,连结CF并延长交AB于E,则  相似文献   

20.
证明等积式一般先将它恰当地化成比例式。若比例式中的四条线段构成有关相似三角形对应边的比 ,则问题较易解决。否则 ,应考虑添加辅助线 ,构成有关的相似三角形 ,以助问题的解决。  例 1.在△ ABC中 (AB>AC)的边 AB上取一点 D,在边 AC上取一点 E,使 AD=AE,直线 DE和BC的延长线交于点 P,求证 BP∶ CP=BD∶ CE。证明 :过点 C作CF∥ AB交 PD于F,则 BPCP=BDCF。∵AD=AD,∴∠ 1=∠ 4 ,∴∠ 3=∠ 4 ,∴ CE=CF,∴ BPCP=BDCE。  说明 :这是过分点 C作平行线 ,过 C还可作 CG∥ PD交 AB于 G(如上图 )。另证 :过 B作…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号