首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以NH_4HCO_3、FeCl_3·6H_2O、Zn(NO_3)_2·6H_2O和Ni(NO_3)_2·6H_2O为原料,在室温条件下,采用固相法合成了超细镍锌铁氧体。通过TGA/DSC、扫描电子显微镜(SEM)和X射线衍射仪(XRD)进行了分析和表征,结果表明:前驱体在800℃进行煅烧,合成了立方晶系的镍锌铁氧体超细粉体,粒子粒度较为均匀,粒晶在0.2-0.3μm之间,分散性较好。  相似文献   

2.
用旋转喷镀法制备Ni–Zn–Co铁氧体薄膜。通过FeCl2 NiCl2 ZnCl2 CoCl2组成的还原液和CH3COONH4 NH3H2O NaNO2组成的氧化液不断地向转盘上的玻璃基片喷镀,在90℃下反应制备了厚度1–2μm的Ni–Zn–Co铁氧体薄膜。利用X射线衍射(XRD)确定样品的物相,用扫描电子显微镜(SEM)观察分析了薄膜的形貌,用振动样品磁强计(VSM)和矢量网络分析仪测量了薄膜的磁性能。  相似文献   

3.
采用高分子凝胶法制备了尖晶石型镍铁氧体,考察煅烧温度对粉体性能的影响,并以苯胺为单体超声乳液聚合制备了不同质量含量的镍铁氧体/聚苯胺复合吸波材料。实验结果表明干凝胶在500℃下煅烧能形成均匀纯净的尖晶石型Ni Fe2O4;红外光谱显示金属一氧离子(M-O)键的特征吸收峰随煅烧温度的增加有蓝移倾向。镍铁氧体/聚苯胺复合粉体的红外光谱测试发现其中N原子与Fe原子形成配位键的电子效应使聚苯胺各个吸收峰都发生红移,当镍铁氧体的质量含量为15%时,红移最大,复合材料最均匀。  相似文献   

4.
以FeCl3·6H2O、Ba(NO3)2和NaOH为原料,采用固相法合成了M型超细钡铁氧体.通过TGA/SD-TA、扫描电子显微镜(SEM)和X射线衍射仪(XRD)进行了分析和表征.结果表明:前驱体在900℃进行煅烧,合成了以M型钡铁氧体BaFe12O19为主,含有少量BaFe2O4>的起细粉体,粒子粒度较为均匀,粒晶在100nm左右,分散性较好.  相似文献   

5.
采用化学溶液沉积法在Si(001)衬底上制备Ni0.7Zn0.3Fe2O4铁氧体薄膜,XRD谱表明样品具有单相的尖晶石结构;扫描电子显微镜结果表明样品平均颗粒尺寸随着退火温度的上升从10 nm增加到32 nm。NZFO铁氧体薄膜磁性能与退火温度有强烈的依赖关系,薄膜的矫顽力从退火温度为500℃时的25 Oe增加到900℃时的80 Oe,饱和磁化强度也由146emu/cm3增加到283 emu/cm3,这对于现代电子器件微型化有着非常重要的意义。  相似文献   

6.
镍与HEDP配位化合物的制备及红外光谱表征   总被引:1,自引:1,他引:0  
制备Ni(Ⅱ)-HEDP的系列固体配位化合物,用元素分析确定其组成,分别为Ni2L·6H2O、NiH2L·4H2O、NaNiHL·5H2O、K2NiL·8H2O、K2Ni(H2L)2·8H2O、K4Ni(HL)2·12H2O和K6NiL2·10H2O,其中L=CH3C(OH)(PO3)2,用红外光谱进行了表征.  相似文献   

7.
采用Sol-Gel方法制备了Ni/TiO2-Al2O3干凝胶催化剂.通过BET,X-射线衍射和热重及差热分析,考察了焙烧温度和还原温度对Ni/TiO2-Al2O3催化剂性能的影响.结果表明,在973K温度下焙烧10 h后的催化剂比表面积达到363m2/g, 干凝胶催化剂中有尖晶石相的NiAl2O4固溶体形成, 催化剂评价体系的还原氛围有助于NiAl2O4在较低温度下被还原.  相似文献   

8.
采用热分析法对不同组成的LiOH-LiNO3二元体系进行研究,绘制了具有最低共熔点的该二元体系T-x相图。用该低共熔混合物为锂盐,与前驱体Ni0.8Co0.2(OH)2混合烧结制备出锂离子电池正极材料LiNi0.8Co0.2O2。  相似文献   

9.
通过溶胶凝胶法制备NixZn1-xFe2O4(x=0.2,0.4,0.6,0.8)铁氧体粉体.XRD显示制备的样品具有良好的尖晶石结构.研究了其磁性能比如密度、起始磁导率、Q值和截止频率.  相似文献   

10.
考察了不同Ni担栽量的Ni/α-Al2O3催化剂对甲烷部分氧化的催化性能的影响和助剂Ce对Ni基催化剂性能的调变作用.采用沉淀法以NH3·H2O、Al(NO3)3·9H2O和Ni(NO3)3·6H2O为原料合成Ni/α-Al2O3凝胶,经过高温煅烧制备纳米级催化剂Ni/α-Al2O3粉末.通过固定床反应器进行催化剂的活性评价,并对其进行XRD和TPR分析.结果表明:8%Ni(质量分数)的Ni/α-Al2O3催化剂催化活性最佳,同时添加稀土Ce有助于提高催化剂的活性、选择性和稳定性.  相似文献   

11.
水基Fe3O4磁流体的制备和磁流体磁性粒子形成的影响因素   总被引:4,自引:0,他引:4  
采用化学共沉淀法,选择NaOH作沉淀剂在水溶液中共沉淀FeCl2和FeCl3,制备纳米级铁氧体磁性粒子的水基磁流体,探讨了温度、碱的过量比、反应时间对磁流体基本性质的影响,着重讨论了磁性粒子形成的影响因素及其作用机理,并对产品进行了性能测试。通过实验确定了制备小粒径、强磁性、分散均匀的Fe3O4磁性粒子的工艺条件:反应时间30min,温度55℃,碱的过量比为y=1∶4,FeCl2.7H2O和FeCl3.9H2O的数量比为3∶2。  相似文献   

12.
通过选用HCOOH,Ni(NO3)2,6H2O,CoCl2.2H2O等为原料,合成两种具有相同的?1,3-HCOO-桥联Ni2 和Co2 的三维孔洞结构的配合物[Ni(HCOO)2]n(1)和同样具有三维孔洞配合物[Co(HCOO)2]n.2H2O(2),通过水热和H-管扩散的方法得到了相同的两种配合物的晶体并用X-R A Y单晶衍射的方法表征了两种化合物的晶体结构。此外还测定了配合物1和2的电化学性质。  相似文献   

13.
应用XRD、TPR和催化活性评价手段 ,考察了助剂对CH4 与CO2 重整制合成气的负载型Ni催化剂的最大分散量和其催化性能的影响 .实验结果表明 ,在反应温度为 750℃和空速为2 50 0h- 1下 ,NiO载量为 14%NiO/γ -Al2 O3催化剂具有最佳的反应性能 ,NiO在γ -Al2 O3表面上最大分散量为 0 .2 38gNiO/gγ -Al2 O3(相当于 0 .112gNiO/10 0m2 γ -Al2 O3) ,其最大分散量随MgO、La2 O3助剂的添加不同程度地增大 ;助剂能影响负载型Ni催化剂的催化性能 ,MgO、La2 O3的添加对改善Ni催化剂的重整活性和抗积炭能力有明显效果 .La2 O3助剂的突出作用表现在维持Ni为低价还原态和促进CO2 转化等方面 .  相似文献   

14.
例1(2005年宜昌)在太空舱里为保持舱内O2、CO2气体含量的相对稳定,常用NiFe2O4作催化剂将宇航员呼出的CO2转化为O2.NiFe2O4中的铁显+3价,Ni的化合价为( )  相似文献   

15.
本文用新型具有恒定温度环境的反应热量计,以6mol·dm-3HClaq为量热溶剂,分别测定了Co(Ac)2·4H2O、无水Ni(Ac)2的溶解焓。根据热化学原理并采取合理的近似处理,估算出其标准生成焓分别为△fH[Co(Ac)2·4H2O,s]=-2167.54kJ·mol-1,△fH[Ni(Ac)2,s]=-989.657kJ·mol-1。  相似文献   

16.
采用柠檬酸盐溶胶-凝胶法制备Ba2Co2Fe12O22铁氧体,在热处理阶段,分别通过控制热处理的温度和时间来制备不同粒径大小的磁性纳米粒子,利用高分辨率激光粒度仪分析测试在不同条件下获得的铁氧体,同时探讨了反应溶液不同的PH值对合成的影响。实验结果表明,延长加热时间和提高热处理温度都会使纳米粒子的粒径增大,在PH值略高...  相似文献   

17.
以LiMn1.5Ni0.5O4作为锂离子电池的正极材料,用电化学手段考察了其电池的电化学性能与电解液组成的关系,研究发现混合电解液的放电容量的顺序为EC DEC(1:1)>EC DMC(1:1)>EC DEC(3:2)>EC DEC(2:3)>EC PC(1:1),从而为LiMn1.5Ni0.5O4作为锂离子电池的正极材料选择了较理想的混合电解液。  相似文献   

18.
利用改进的Preisach-DOK模型模拟得到了纵向钡铁硬磁盘及γ-Fe2O3软盘的磁滞回线、剩磁回线、可逆曲线,分析了两种样品的剩磁特性.研究发现钡铁氧体的矫顽力主要由磁晶各向异性决定,大于主要由形状各向异性决定的γ-Fe2O3的矫顾力.同时钡铁氧体具有高的Sr,小的SP75和窄的SFDr,说明其具有较好的剩磁特性.  相似文献   

19.
两类聚苯胺复合基体手性材料吸波性能的研究   总被引:3,自引:0,他引:3  
我们制备了MnZn铁氧体聚苯胺复合基体和Fe3O4聚苯胺复合基体的碳纤维手性材料,利用微波国波导法在8.5-11.0GHz频宽内测量了各手性材料的电磁参量,计算出自由空间中的短路反射系数。对短路反射系数受频率、基体中铁氧体浓度的影响作了分析。  相似文献   

20.
利用改进的Preisach-DOK模型模拟得到了纵向钡铁硬磁盘及γ-Fe2O3软盘的Henkel曲线和Δm曲线.研究发现钡铁氧体粒子之间具有很强的“正”相互作用,起到了阻止退磁的作用,说明钡铁氧体具有较好的剩磁特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号