首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 476 毫秒
1.
题1设a、b、c为正实数.证明: a/√a^2+b^2+b/√b^2+c^2+c/√c^2+a^2≤3√2/2.  相似文献   

2.
题1 求证:对任意正实数a、b、c,都有1〈a/√a^2+b^2+b/√b^2+c^2+c/√c^2+a^2≤3√2/2。  相似文献   

3.
定理在△ABC中,角A、B、C所对的边为a、b、c,△为其面积,且x,y,z是任意实数,则 x^2+y^2+z^2≥4△√x^2y^2+a^2b^2+y^2z^2/b^2c^2+z^2z^2+c^2a^2  相似文献   

4.
文[1]研究了如下的题目: 题目已知z,y,z∈R’,x+y+z=1,求证:1/√x+8/√y+27/√z≥14√14.并给出了初等证明(利用基本不等式),且对以上问题加以推广:  相似文献   

5.
文[1]中借助代数恒等式a^2/a+b+b^2/b+c+c^2/c+a=b^2/a+b+c^2/b+c/a^2/c+a证明了4个相关的不等式,并在文末提出如下问题:已知a,b,c ∈ R^+,当入与μ满足什么条件时,如下不等式成立:a^2/√λ(a^2+b^2)+aμab+b^2/√λ(b^2+c^2)+2μbc+c^2/√λ(c^2+a^2)+2μab+b^2/λ(b^2+c^2)+2μbc+c^2√λ(c^2+a^2)+2μab≥a+b+c/√2(λ+μ)(1).  相似文献   

6.
构造法六则     
1.构造向量 例1设a,b,c,x,y,z是正数,且a^2+b^2+c^2=10,x^2+y^2+z^2=40,ax+by+cz=20,则a+b+c/x+y+z=( )  相似文献   

7.
题目已知实数a、b、c、x、y、z满足(a+b+c)(x+y+z)=3,(a^2+b^2+c^2)(x^2+y^2+z^2)=4.求证:ax+by+cz≥0.  相似文献   

8.
文[1]建立并证明了“两个十分有意义的无理不等式”.其中 定理1 若x,y为满足z+y=1的正数,则对于不大于2的正数λ有(√x+√y)(1/√λx+1+1/√λy+1)〈4/√λ+2.  相似文献   

9.
第42届国际数学奥林匹克竞赛第2题为:对所有正实数a,b,c,证明a/√a^2+8bc+b/√b^2+8ca+c/√c^2+8ab≥1.  相似文献   

10.
题目 已知a,b,c∈R,求证:√a^2+b^2+√b^2+c^2+√c^2+a^2≥√2|a+b+c|.  相似文献   

11.
第42届IMO第2题是:对所有正实数a,b,c,证明:a/√(a^2+8bc)+b/√b^2+8ca+c/√c^2+8ab≥1.(1)这是一个形式优美的不等式,文[1]介绍了基于反证法的证明,文[2]给出了一种很简洁的直接证法,笔者读后深受启发,受文[2]启发,本文将不等式(1)进行推广,可得如下:  相似文献   

12.
第42届1M0第二题:对所有正实数a,b,c,证明a/√a^2+8bc+b/√b^2+8ca+c/√c^2+8ab≥1(1)(以下简称赛题).  相似文献   

13.
1 构造平面几何图形 例1 a〉0,b〉0,c〉0.求证:√a^2+b^2+√b^2+c^2+√a^2+c^2≥√2(a+b+c).  相似文献   

14.
题目设正实数a,b,c满足 {a^2+b^2=3, a^2+c^2+ac=4 b^2+c^2+√3bc=7,求a,b,c的值.  相似文献   

15.
题1 设a,b∈(0,+∞),且(√b^2+c^2+b-c)(√a^2+c^2+a-c)=2ab,求证:c^2=ab.[第一段]  相似文献   

16.
文[1]由不等式:若0≤x,y,x1,y1≤1,x+x1=1,y+y1=1,则L2=√x^2+y^2+√x^2+y1^2+√x1^2+y1^2≤2+√2(1),猜想不等式:若0≤x,y,z,x1,y1,z1≤1,x+x1=1,y+y1=1,z+z1=1.[第一段]  相似文献   

17.
引理1:椭圆b^2x^2+a^2y^2=a^2b^2(a〉b〉0)上A、B两点的切线交于P(x0,y0),则AB的直线方程为b^2x0x+a^2y0y=a^2b^2  相似文献   

18.
在文[1]中,宋庆老师提出如下不等式猜想:若a,b,c为正实数且满足abc=1,则a^2/2+a+b^2/2+b+c^2/2+c≥1.文[2]作者证明了此猜想,对比上述不等式,笔者证明了一些相类似的不等式.首先给出一个引理。引理x1,y1∈R^+,i=1,2,…n,  相似文献   

19.
1966年,Gordon提出了关于三角形的一个不等式: ba+ca+ab≥4√3△, 其中a,b,c是某三角形的边,△是其面积.因为 a^2+b^2+c^2≥bc+ca+ab. 所以它是Weitzenbock不等式 a^2+b^2+c^2≥4√3△ 的一个加强,式(3)也被用作第3届IMO试题. 本文给出了式(1)的一个加权推广.  相似文献   

20.
1问题的提出 从一道高考题谈起:大家可能还记得2004年全国高考新课程卷第(12)题:已知a^2+b^2=1,b^2+c^2=2,c^2+a^2=2,则ab+bc+ca的最小值为( )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号