首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to compare force– and power–time curve variables during jumping between Division I strength-matched male and female basketball athletes. Males (n?=?8) and females (n?=?8) were strength matched by testing a one-repetition maximum (1RM) back squat. 1RM back squat values were normalised to body mass in order to demonstrate that strength differences were a function of body mass alone. Subjects performed three countermovement jumps (CMJ) at maximal effort. Absolute and relative force– and power–time curve variables from the CMJs were analysed between males and females. Average force– and power–time curves were generated for all subjects. Jump height was significantly greater (p?≤?.05) in males than females. Absolute force was higher in males during the concentric phase, but not significantly different (p?≥?.05) when normalised to body mass. Significance was found in absolute concentric impulse between sexes, but not when analysed relative to body mass. Rate of force development, rate of power development, relative peak force, and work were not significantly different between sexes. Males had significantly greater impulse during the eccentric phase as well as peak power (PP) during the concentric phase of the CMJ than did females in both absolute and relative terms. It is concluded that sex differences are not a determining factor in measured force during a CMJ when normalised to body mass between strength-matched subjects. However, eccentric phase impulse and concentric phase PP appear to be influenced by sex differences independent of matching strength levels.  相似文献   

2.
ABSTRACT

Purpose: A vertical jump (VJ) is a common task performed in several sports, with the height achieved correlated to skilled performance. Loaded VJs are often used in the training of recreational and professional athletes. The bilateral deficit (BLD), which refers to the difference between the heights achieved by a bilateral jump and the sum of two unilateral jumps, has not been reported for loaded jumps and the findings for unloaded jumps are inconclusive. The purpose of this study was threefold: (a) to quantify and compare BLD in countermovement (CMJ) and squat jumps (SJ), (b) to explore the effects of an additional 10% of body weight (BW) load on the BLD in both CMJ and SJ, and (c) examine the relationship between magnitude of BLD and jump performance in both jumps and conditions. Methods: Forty participants (22 for CMJ and 18 for SJ) performed a bilateral jump and unilateral jumps on each leg with and without an added load equivalent to 10% of each participant’s bodyweight. Results: BLD was evident in all conditions, with CMJ BLD values nearly double those for the SJ. The extra load did not affect the magnitude of BLD. BLD had a significant correlation with unilateral jump height, expect for the 110%BW SJ. Conclusions: BLD is present in SJs and CMJs at both loaded and unloaded conditions. The SJs have about half of the BLD observed in CMJs regardless of additional load. Participants who had higher single leg jumps seemed to also have higher BLDs, but there was no evidence of association between the bilateral jump height and BLD.  相似文献   

3.
In order to assess lower extremity muscle mechanical properties in athletes, power-load characteristics during multi-joint tasks are frequently examined. This work compared 6 weeks of traditional (TP) and daily-undulated (DUP) periodized loaded countermovement jumping (CMJ). 20 amateur athletes (age: 24.2 ± 2.6 years, height: 175.6 ± 7.1 cm, body mass: 71.5 ± 7.7 kg, 10 males/10 females) exercised three times weekly using maximal CMJs with loads corresponding to 0%, 15% and 30% of body mass. Prior to the training period, subjects were once-only assigned by random to either the TP or DUP training scheme. Pre-to-post training, maximal center of mass (COM) -height, -take-off velocity, -power output and -impulse were compared during CMJ with additional loads corresponding to 0–30% of body mass. ANOVA (time * group) with repeated measures revealed significant (P < 0.05) temporal gains of maximal COM-height (2–11%), -take-off velocity (1–7%), -power (2–8%) and -impulse (3–9%) over most loading conditions for TP and DUP. However, ANOVA indicated no group effects for any outcome. Independent from the periodization model, maximal power output remained statistically unchanged with increased testing loads. For short-term conditioning periods, TP and DUP were equally effective in enhancing biomechanical jumping variables under varying loading conditions.  相似文献   

4.
This study aimed to determine whether kinematic data during countermovement jump (CMJ) might explain post-activation potentiation (PAP) phenomenon after an exhausting running test. Thirty-three trained endurance runners performed the Léger Test; an incremental test which consists of continuous running between two lines 20 m apart. CMJ performance was determined before (pre-test) and immediately after the protocol (post-test). Sagittal plane, video of CMJs was recorded and kinematic data were obtained throughout 2-Dimensional analysis. In addition to the duration of eccentric and concentric phases of CMJ, hip, knee and ankle angles were measured at four key points during CMJ: the lowest position of the squat, take-off, landing, and at the lowest position after landing. Additionally, heart rate was monitored, and rate of perceived exertion was recorded at post-test. Analysis of variance revealed a significant improvement in CMJ (p = 0.002) at post-test. Cluster analysis grouped according to whether PAP was experienced (responders group: RG, n = 25) or not (non-responders group: NRG, n = 8) relative to CMJ change from rest to post-test. RG significantly improved (p < 0.001) the performance in CMJ, whereas NRG remained unchanged. Kinematic data did not show significant differences between RG and NRG. Thus, the data suggest that jumping kinematic does not provide the necessary information to explain PAP phenomenon after intensive running exercises in endurance athletes.  相似文献   

5.
ABSTRACT

The purpose of this study was to investigate subject- and joint-specific strategies used by male basketball players as they increase their countermovement jump (CMJ) height from sub-maximal to maximal efforts. Lower extremity joint kinematics and kinetics were recorded as 11 male, NCAA Division I basketball players performed 8–10 CMJ across effort levels of approximately 25%, 50%, 75% and 100%. Simple correlation models were used to investigate the associations between effort levels (i.e., CMJ height) and joint mechanics (i.e., negative (eccentric) and positive (concentric) mechanical work performed at the hip, knee, and ankle joints) for each individual player and the entire group. Group-analyses showed that increases in all joint mechanical variables were associated with increases in CMJ height. In contrast, single-subject analyses revealed that players used individualised strategies, and selectively scaled the magnitude of mechanical work at none (n = 2), one (n = 2), two (n = 5), or all three (n = 2) joints as they increased CMJ efforts. In addition, individual players also appeared to selectively scale different combinations of eccentric or concentric joint work as they increased CMJ height. These results highlight that male basketball players use joint-specific strategies to increase CMJ height when progressively increasing CMJ effort.  相似文献   

6.
Abstract

The aims of this study were to: (1) assess the reliability of various kinetic and temporal variables for unilateral vertical, horizontal, and lateral countermovement jumps; (2) determine whether there are differences in vertical ground reaction force production between the three types of jumps; (3) quantify the magnitude of asymmetry between limbs for variables that were established as reliable in a healthy population and whether asymmetries were consistent across jumps of different direction; and (4) establish the best kinetic predictor(s) of jump performance in the vertical, horizontal, and lateral planes of motion. Thirty team sport athletes performed three trials of the various countermovement jumps on both legs on two separate occasions. Eccentric and concentric peak force and concentric peak power were the only variables with acceptable reliability (coefficient of variation = 3.3–15.1%; intra-class correlation coefficient = 0.70–0.96). Eccentric and concentric peak vertical ground reaction force (14–16%) and concentric peak power (45–51%) were significantly (P < 0.01) greater in the vertical countermovement jump than in the horizontal countermovement jump and lateral countermovement jump, but no significant difference was found between the latter two jumps. No significant leg asymmetries (–2.1% to 9.3%) were found in any of the kinetic variables but significant differences were observed in jump height and distance. The best single predictors of vertical countermovement jump, horizontal countermovement jump, and lateral countermovement jump performance were concentric peak vertical power/body weight (79%), horizontal concentric peak power/body weight (42.6%), and eccentric peak vertical ground reaction force/body weight (14.9%) respectively. These findings are discussed in relation to monitoring and developing direction-specific jump performance.  相似文献   

7.
It is unclear whether weighted vest (WV) use improves countermovement vertical jump (CMVJ) performance by enhancing stretch-shortening cycle (SSC) function via increased storage and utilisation of elastic strain energy. In is also unknown whether WV use stimulates different responses in men and women. WV effects on energy storage and utilisation during CMVJ were examined in men and women. Nine men (25 ± 3 y; 89.7 ± 18.7 kg; 1.8 ± 0.1 m) and 12 women (24 ± 3 y; 62.7 ± 10.3 kg; 1.6 ± 0.1 m) performed CMVJ wearing a WV with (loaded) and without (unloaded) 10% added mass while kinematic and ground reaction force (GRF) data were obtained. A longer eccentric sub-phase and increased storage of elastic strain energy occurred when loaded. Increased positive joint work occurred during the concentric portion of loaded CMVJ. Women exhibited less positive hip work and greater positive ankle work than men during the unloading and eccentric sub-phases, respectively. Joint work was similar between sexes during the concentric sub-phase, likely due to decreased trunk extension excursion in men when loaded. Women and men employ different SSC strategies during the CMVJ, though the different strategies do not alter energy storage or concentric mechanical output.  相似文献   

8.
This study aimed to assess the validity and reliability of jump assessments using the MyJump2 application. Eleven junior athletes (15 ± 1.4 years) performed five countermovement (CMJ) and drop jumps (DJ) measured simultaneously by a force platform and MyJump2. Additionally, intra- and inter-day reliability was assessed over two sessions, 7 days apart. Extremely high agreement between MyJump2 and the force platform (intra-class correlation coefficient, ICC ≥ 0.99) and the intra- and inter-operator agreement (ICC = 0.98–0.99) confirmed the validity and reliability of MyJump2. Mean typical errors (coefficient of variation percentage, CV%) within the first and second sessions were 4.9% and 4.5% respectively for CMJs, and 8.0% to 11.8% for DJ outcomes. CMJ height held acceptable inter-day reliability (CV < 10%; ICC > 0.8), while DJ did not. Results supported MyJump2 to be a valid and reliable tool for assessing jumps; however, with variability in DJs in this cohort, appropriate caution should be taken if including in a junior assessment battery.  相似文献   

9.
To investigate the influence of adding a weekly eccentric-overload training (EOT) session in several athletic performance’s tests, 18 team-handball players were assigned either to an EOT (n?=?11) or a Control (n?=?7) group. Both groups continued to perform the same habitual strength training, but the EOT group added one session/week during a 7-week training programme consisting of four sets of eight repetitions for the bilateral half-squat and unilateral lunge exercises. The test battery included handball throwing velocity, maximum dynamic strength (1RM), countermovement jump (CMJ), 20?m sprint, triple hop for distance, and eccentric/concentric power in both the half-squat and lunge exercises. Data were analysed using magnitude-based inferences. Both groups improved their 1RM in the half squat, 20?m sprint time, and CMJ performance to a similar extent, but the EOT group showed a beneficial effect for both right [(42/58/0), possibly positive] and left [(99/1/0), very likely positive] triple hop for distance performance. In addition, the EOT group showed greater power output improvements in both eccentric and concentric phases of the half-squat (difference in percent of change ranging from 6.5% to 22.0%) and lunge exercises (difference in per cent of change ranging from 13.1% to 24.9%). Nevertheless, no group showed changes in handball throwing velocity. Selected variables related to team-handball performance (i.e. functional jumping performance, power output) can be improved by adding a single EOT session per week, highlighting the usefulness of this low-volume/high-intensity training when aiming at optimizing dynamic athletic performance.  相似文献   

10.
This study aimed to (1) assess the reliability of the force, velocity, and power output variables measured by a force plate and a linear velocity transducer (LVT) for both the unconstrained and constrained loaded countermovement jump (CMJ), and (2) examine the effect of both the CMJ type and the measurement method on the magnitudes of the same variables. Twenty-three men were tested on the free CMJ and the CMJ constrained by a Smith machine. Maximum values of force, velocity, and power were recorded by a force plate and by a LVT attached to a bar loaded by 17, 30, 45, 60, and 75 kg. The reliability of all mechanical variables proved to be high (ICC > 0.70; CV < 10%) and similar for two CMJ types. However, force plate-derived measures displayed greater reliability than the LVT. The LVT also markedly overestimated the magnitudes of the mechanical variables, particularly at lower external loads. Therefore, although both jump types and both methods could be acceptable for routine testing, we recommend the force platform due to a higher reliability and more accurate magnitudes of the obtained variables. The unconstrained loaded CMJ could also be recommended due to the simpler equipment needed.  相似文献   

11.
Plyometric jumping is a commonly prescribed method of training focused on the development of reactive strength and high-velocity concentric power. Literature suggests that aquatic plyometric training may be a low-impact, effective supplement to land-based training. The purpose of the present study was to quantify acute, biomechanical characteristics of the take-off and flight phase for plyometric movements performed in the water. Kinetic force platform data from 12 young, male adults were collected for counter-movement jumps performed on land and in water at two different immersion depths. The specificity of jumps between environmental conditions was assessed using kinetic measures, temporal characteristics, and an assessment of the statistical relationship between take-off velocity and time in the air. Greater peak mechanical power was observed for jumps performed in the water, and was influenced by immersion depth. Additionally, the data suggest that, in the water, the statistical relationship between take-off velocity and time in air is quadratic. Results highlight the potential application of aquatic plyometric training as a cross-training tool for improving mechanical power and suggest that water immersion depth and fluid drag play key roles in the specificity of the take-off phase for jumping movements performed in the water.  相似文献   

12.
The aim of this study was to examine the metabolic demand and extent of muscle damage of eccentric cycling targeting knee flexor (FLEX) and knee extensor (EXT) muscles. Methods: Eight sedentary men (23.3?±?0.7?y) underwent two eccentric cycling sessions (EXT and FLEX) of 30?min each, at 60% of the maximum power output. Oxygen consumption (VO2), heart rate (HR) and rated perceived exertion (RPE) were measured during cycling. Countermovement and squat jumps (CMJ and SJ), muscle flexibility, muscle soreness and pain pressure threshold (PPT) of knee extensor and flexor muscles were measured before, immediately after and 1–4 days after cycling. Results: FLEX showed greater VO2 (+23%), HR (+14%) and RPE (+18%) than EXT. CMJ and SJ performance decreased similarly after cycling. Muscle soreness increased more after EXT than FLEX and PPT decreased in knee extensor muscles after EXT and decreased in knee flexor muscles after FLEX. Greater loss of muscle flexibility in knee flexor muscles after FLEX was observed. Conclusion: Eccentric cycling of knee flexor muscles is metabolically more demanding than that of knee extensors, however muscle damage induced is similar. Knee flexors experienced greater loss of muscle flexibility possibly due to increased muscle stiffness following eccentric contractions.  相似文献   

13.
Abstract

This study aimed to investigate the contributions of kinetic and kinematic parameters to inter-individual variation in countermovement jump (CMJ) performance. Two-dimensional kinematic data and ground reaction forces during a CMJ were recorded for 18 males of varying jumping experience. Ten kinetic and eight kinematic parameters were determined for each performance, describing peak lower-limb joint torques and powers, concentric knee extension rate of torque development and CMJ technique. Participants also completed a series of isometric knee extensions to measure the rate of torque development and peak torque. CMJ height ranged from 0.38 to 0.73 m (mean 0.55 ± 0.09 m). CMJ peak knee power, peak ankle power and take-off shoulder angle explained 74% of this observed variation. CMJ kinematic (58%) and CMJ kinetic (57%) parameters explained a much larger proportion of the jump height variation than the isometric parameters (18%), suggesting that coachable technique factors and the joint kinetics during the jump are important determinants of CMJ performance. Technique, specifically greater ankle plantar-flexion and shoulder flexion at take-off (together explaining 58% of the CMJ height variation), likely influences the extent to which maximal muscle capabilities can be utilised during the jump.  相似文献   

14.
ABSTRACT

The aims of the present study were to provide an in-depth comparison of inter-limb asymmetry and determine how consistently asymmetry favours the same limb during different vertical jump tests. Eighteen elite female under-17 soccer players conducted unilateral squat jumps (SJ), countermovement jumps (CMJ) and drop jumps (DJ) on a portable force platform, with jump height, peak force, concentric impulse and peak power as common metrics across tests. For the magnitude of asymmetry, concentric impulse was significantly greater during the SJ test compared to CMJ (p = 0.019) and DJ (p = 0.003). No other significant differences in magnitude were present. For the direction of asymmetry, Kappa coefficients revealed fair to substantial levels of agreement between the SJ and CMJ (Kappa = 0.35 to 0.61) tests, but only slight to fair levels of agreement between the SJ and DJ (Kappa = ?0.26 to 0.18) and CMJ and DJ (Kappa = ?0.13 to 0.26) tests. These results highlight that the mean asymmetry value may be a poor indicator of true variability of between-limb differences in healthy athletes. The direction of asymmetry may provide a useful monitoring tool for practitioners in healthy athletes, when no obvious between-limb deficit exists.  相似文献   

15.
As hill jumps are very time-consuming, ski jumping athletes often perform various imitation jumps during training. The performed jumps should be similar to hill jumps, but a direct comparison of the kinetic and kinematic parameters has not been performed yet. Therefore, this study aimed to correlate 11 common parameters during hill jumps (Oberstdorf Germany), squat jumps (wearing indoor shoes), and various imitation jumps (rolling 4°, rolling flat, static; jumping equipment or indoor shoes) on a custom-built instrumented vehicle with a catch by the coach. During the performed jumps, force and video data of the take-off of 10 athletes were measured. The imitation and squat jumps were then ranked. The main difference between the hill jumps and the imitation and squat jumps is the higher maximal force loading rate during the hill jumps. Imitation jumps performed on a rolling platform, on flat ground were the most similar to hill jumps in terms of the force–time, and leg joint kinematic properties. Thus, non-hill jumps with a technical focus should be performed from a rolling platform with a flat inrun with normal indoor shoes or jumping equipment, and high normal force loading rates should be the main focus of imitation training.  相似文献   

16.
Department of Health, Physical Education, Recreation, and Dance at the University of Idaho. This study was performed to examine the effects of movement velocity and maximal concentric and eccentric actions on the bilateral deficit. Eighteen female participants performed maximal unilateral and bilateral knee extensions concentrically and eccentrically across six movement velocities (30, 60, 90, 120, 150, and 180 degrees/s). Repeated measures analyses of variance revealed significant differences (p < .025) between bilateral and summed unilateral contractions both concentrically and eccentrically at each velocity tested. Post hoc analyses revealed that the degree of bilateral deficit increased as movement velocity increased for concentric actions (e.g., 17-33% deficit, for 30 and 180 degrees/s, respectively), and an increasing trend was seen for eccentric actions (e.g., 18-25% deficit, for 30 and 180 degrees/s, respectively). These findings suggest that with increased velocity, a decreased or incomplete activation of fast twitch muscle fibers may have occurred in bilateral actions when compared to unilateral actions.  相似文献   

17.
The purpose of this investigation was to analyse the concurrent validity and reliability of an iPhone app (called: My Jump) for measuring vertical jump performance. Twenty recreationally active healthy men (age: 22.1 ± 3.6 years) completed five maximal countermovement jumps, which were evaluated using a force platform (time in the air method) and a specially designed iPhone app. My jump was developed to calculate the jump height from flight time using the high-speed video recording facility on the iPhone 5 s. Jump heights of the 100 jumps measured, for both devices, were compared using the intraclass correlation coefficient, Pearson product moment correlation coefficient (r), Cronbach’s alpha (α), coefficient of variation and Bland–Altman plots. There was almost perfect agreement between the force platform and My Jump for the countermovement jump height (intraclass correlation coefficient = 0.997, P < 0.001; Bland–Altman bias = 1.1 ± 0.5 cm, P < 0.001). In comparison with the force platform, My Jump showed good validity for the CMJ height (= 0.995, P < 0.001). The results of the present study showed that CMJ height can be easily, accurately and reliably evaluated using a specially developed iPhone 5 s app.  相似文献   

18.
There are two perceived criterion methods for measuring power output during the loaded countermovement jump (CMJ): the force platform method and the combined method (force platform + optoelectronic motion capture system). Therefore, the primary aim of the present study was to assess agreement between the force platform method and the combined method measurements of peak power and mean power output during the CMJ across a spectrum of loads. Forty resistance-trained team sport athletes performed maximal effort CMJ with additional loads of 0 (body mass only), 25, 50, 75 and 100% of body mass (BM). Bias was present for peak velocity, mean velocity, peak power and mean power at all loads investigated, and present for mean force up to 75% of BM. Peak velocity, mean velocity, peak power and mean power 95% ratio limits of agreement were clinically unacceptable at all loads investigated. The 95% ratio limits of agreement were widest at 0% of BM and decreased linearly as load increased. Therefore, the force platform method and the combined method cannot be used interchangeably for measuring power output during the loaded CMJ. As such, if power output is to be meaningfully investigated, a standardised method must be adopted.  相似文献   

19.
周强 《浙江体育科学》2000,22(1):44-47,64
下肢肌肉储能大小和再利用率反映了运动员下肢肌的力量素质和动作技术的优劣 ,也是评定运动员下肢肌肉力量素质的动力学指标。我们采用高速摄影和三维测力 ,对 6名运动员在跳跃踏跳中 ,下肢肌肉的储能大小、负功利用率及其影响因素进行了研究。试验结果表明 :1 .外负荷变化时 ,踏跳缓冲结束瞬时肌肉的力值不同 ,且存在极值 ,此极值的大小与运动员的力量素质有关。 2 .下肢肌肉的储能与缓冲结束瞬时的力值之间有一定的比例关系 ,当肌肉受到一个最佳的拉伸力时 ,肌肉储能最多。 3.肌肉在向心收缩过程 ,对其在离心收缩过程中肌肉所做的负功的利用率 ,随着外负荷的增大而降低  相似文献   

20.
ABSTRACT

We aimed to determine key biomechanical parameters explaining age-related jumping performance differences in youth elite female soccer players. Multiple biomechanical parameters from countermovement (CMJ) squat (SJ) and drop (DJ) jump testing of elite female soccer players (n = 60) within the same national training centre were analysed across ages 9-11y, 12-14y and 15-19y. Effects of age group and jump type on jump height were found, with the older jumping higher than the younger groups in all jumps (P < 0.05). For DJ, higher reactive strength index was found for older, compared to each younger group (P < 0.001). For CMJ and SJ, peak power was the most decisive characteristic, with significant differences between each group for absolute peak power (P < 0.0001) and body-weight-normalised peak power in CMJ (57 ± 7W/kg, 50 ± 7W/kg, 44.7 ± 5.5W/kg; P < 0.05) and between the older and each younger group in SJ (56.7 ± 7.1W/kg, 48.9 ± 7.1W/kg, 44.6 ± 6W/kg; P < 0.01). Age-related differences in jumping performance in youth elite female soccer players appear to be due to power production during standing jumps and by the ability to jump with shorter ground contact times during reactive jumps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号