首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在△ABC中有余弦定理:a~2=b~2 c~2-2bc·cosA,变形得: a~2=(b c)~2-2bc(1 cosA) =(b c)~2-4bc·cos~2A/2 ≥(b c)~2-(b c)~2cos~2A/2 =(b c)~2sin~2A/2. 由此得sinA/2≤a/(b c)(当且仅当b=c时取等号).同理可得sinB/2≤b/(a c)(当且仅当a=c时取等号);  相似文献   

2.
《高中生》2007,(24)
一、直接运用正弦定理或余弦定理求解的问题例1在△ABC中,已知角A,B,C的对应边分别为a,b,c,且满足4sin~2((B C)/2)-cos2A=7/2.(1)求角A的度数;(2)若a=3~(1/2),b c=3,且b相似文献   

3.
一、判断三角形的形状例1已知a、b、c分别是△ABC的三条边,且a~2+ac=b~2+bc,试判断△ABC的形状.解析:由a~2+ac=b~2+bc.得a~2- b~2+ac-bc=0.将此式的左边分解因式,得(a-b)(a+b+c)=0.因为a、b、c是△ABC的三条边.所以a+b+b>0.故a-b=0.从而a=b,于是△ABC是等腰三角形.  相似文献   

4.
正(数学(高二上册))达标训练二填空题第一题是这样的:已知a,b,c是△ABC的三条边,比较大小(a+b+c)24(ab+bc+ca).这道题的解答可以用特殊值法.取a=b=c=1,得(a+b+c)2=9,4(ab+bc+ca)=12,所以(a+b+c)24(ab+bc+ca).将这道题稍微变形,就是全日制普通高级中学教科书(实验修订本·必修)数学第二册(上)第31页B组题的第6题:设a,b,c为△ABC的三边,求证:a2+b2+c22(ab+bc+ca).这道题的解法紧紧围绕三角形的边的特征,依据不同的思维,不同的入口结合不等式证明的不同方法,可以得到不同的证法.并且依据已经证明的结论,还可以进行引申.  相似文献   

5.
(一)我省今年中考数学试题第八题是这样的:在△ABC中,已经学过△=(1/2)absinC,c~2=a~2+b~2-2abcosC,另外还学过sin~2a+cos~2a=1,试根据上述公式证明△=(s(s-a)(s-b)(s-c))~(1/2)(这里s=(a+b+c)/2)。  相似文献   

6.
王飞 《考试周刊》2012,(43):64-64
已知a,b,c是△ABC的三条边,比较大小(a+b+c)2____4(ab+bc+ca).这道题的解答可以用特殊值法.取a=b=c=1,得(a+b+c)2=9,4(ab+bc+ca)=12,所以(a+b+c)2〈4(ab+bc+ca).将这道题稍微变形,就是设a,b,c为△ABC的三边,求证:  相似文献   

7.
已知a、b、c是△ABC的三条边,如果∠C=90°,那么a~2+b~2=c~2, (1)如果∠C≠90°,那么a~2=b~2+c~2-2bccosA, (2)由正弦定理, a=2RsinA,b=2RsinB,c=2RsinC分别代入(1),(2)可得 sin~2A+sin~2B=sin~2C, (3) sin~2A=sin~2B+sin~2C-2sinBsinCcosA。(4) 上面(1),(2)是我们熟知的勾股定理和余弦定理,而(3),(4)是由正弦定理推导出来的含角(不含边)的关系式,类似勾股定理和余弦定理(实际上是和勾股定理、余弦定理等价)的形式,不妨称之为“角形式的勾股定理和余弦定理”。应用这两个定理,可使某些数  相似文献   

8.
下面是1988年“缙云杯”初中数学邀请赛的一道试题.本文用两种简捷方法来解.△ABC 中,三边 a、b、c 满足 b+c=8,bc=a~2-12a+52.试问△ABC 是什么三角形(按边分类),并证明你的结论.解法一由已知易知 b、c 是方程 x~2-8x+(a~2-12a+52)=0的两个根.  相似文献   

9.
绝妙解法     
题目求 sin~210°+cos~240°+sin10°cos40°的值.解△ABC 中,由余弦定理和正弦定理,有a~2=b~2+c~2-2bccosA, (1)(a/(sina))=(b/(sinB))=(c/(sinC))=k (2)由 a=ksinA,b=ksinB,c=ksinC 代入(1)得sin~2A=sin~2B+sin~2C-2sinBsinC·cosA. (3)  相似文献   

10.
定理是解题的重要工具,本文介绍一个定理及其应用。定理在△ABC中,有 sin~2C=sin~2A+sin~2B—2sinAsinBcosC。证明在△ABC中,由余弦定理: c~2=a~2+b~2-2abcosC及正弦定理:a=2RsinA,b=2RsinB,c=2RsinC,可得 sin~2C=sin~2A+sin~2B-2sinAsinBcosC。  相似文献   

11.
对一个优美的半对称不等式的补充   总被引:2,自引:0,他引:2  
文 [1 ]给出了一个优美的半对称不等式 :命题 在非钝角△ABC中 ,设BC =a ,AC =b ,AB =c,ma 为BC边上的中线长 ,wa为∠A的平分线长 ,则有mawa≤b2 +c22bc .①受文 [1 ]的启发 ,笔者发现以下一个优美的半对称不等式 :命题 在任意△ABC中 ,设BC =a ,AC=b ,AB =c,ma 为BC边上的中线长 ,wa 为∠A的平分线长 ,则mawa≥(b +c) 24bc .②证明 :设p为△ABC的半周长 ,则式②等价于(b +c) 4 w2a ≤1 6b2 c2 m2a.③由角平分线公式wa =2bcp(p -a)b +c 和中线长公式ma=12 2 (b2 +c2 ) -a2 可知③ (b +c) 2 [(b +c) 2 -a2 ]    ≤4bc[2 (b…  相似文献   

12.
题1在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,AD为BC边上的高,且AD=BC,求b/c+b/c的最大值.解法1由AD=BC,可得S△ABC=1/2a2=1/2bcsinA,从而得a2/bc=sinA①  相似文献   

13.
三角形既可以按边分类也可以按角分类,当我们得到了它们的边(角)之间的关系或最大角的度数时,就能据此判定三角形的形状.下面向大家介绍判断三角形形状的多种方法,相信对开拓同学们的思维,提高解题技能和技巧会有一定的帮助.一、利用因式分解进行判定例1在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,a~2+2ab=c~2+2bc,试判定△ABC的形状.解析∵a~2+2ab=c~2+2bc,a~2-c~2+2ab-2bc=0,即(a-c)(a+c)+2b(a-c)=0,  相似文献   

14.
1逆向思维的教材原型题与近年高考题 例1 (新课标选修4-5第25页习题 2.2第2题)已知a,b,c,∈R+,用综合法证: (ab+a+b+1)(ab+ac+bc+c2)≥16abc. 证明 (ab十a+b+1)(ab+ac+bc+c2)=(a+1) (b+1)(a+c) (b+c)≥2√a×2b×2√ac×2√bc=16abc. 例2 (2010年重庆文科第10题)若a,b,c>0,且a2+2ab+2ac+4bc=12,则ab+c的最小值是().  相似文献   

15.
人教版高中《数学》第二册(上)(必修)(以下简称"课本")第31页第6题(以下简称"原题"):设 a,b,c是△ABC 的三条边,求证:a~2 b~2 c~2<2(ab ac bc).(*)《教师教学用书》给出"原题"的证法:证法1:a~2 b~2 c~2-2(ab ac bc)=a(a-b-c) b(b-a-c) c(c-a-b).∵三角形两边之和大于第三边,∴a相似文献   

16.
在高二"不等式的证明"这节内容中有这样一道题:已知a,b,c是△ABC的三条边,比较大小:(a b c)24(ab bc ca).这道题的解答可以用特殊值法.取a=b=c=1,得(a  相似文献   

17.
初中《代数》第四册解三角形一章中介绍了已知两边和其中一边的对角解三角形。已知角A为锐角时,用几何法判定三种不同情况下的解: (1)当a相似文献   

18.
a+b+c=0(a,b,c∈R),有许多简捷、优美的结论,且有着广泛的用途.结论1 若 a+b+c=0,则 b~2≥4ac 或a~2≥4bc 或c~2≥4ab.证明:因为 a+b+c=0,所以 b=-(a+c),b~2=(a+c)~2=a~2+c~2+2ac≥2ac+2ac=4ac,即 b~2≥4ac.同理可得,a~2≥4bc,c~2≥4ab.结论2 若 a+b+c=0,则 a~3+b~3+c~3=3abc.证明:因为 a+b+c=0,所以 a+b=-c,(a+b)~3=-c~3,即 a~3+3a~2b+3ab~2+b~3+c~3=0,也即 a~3+3ab·(a+b)+b~3+c~3=0,又 a+b=-c,所以 a~3+b~3+c~3  相似文献   

19.
在三角形中刻画边角关系最重要的定理是正弦定理和余弦定理.但在近几年高考数学试题中经常出现三角形中角的正切问题.为此我们向读者介绍下面的一个正切公式:定理设非直角△ABC的三个内角A、B、C所对的边为a、b、c,S为其面积,则有:tanA=b2+4c2S-a2;tanB=a2+4cS2-b2;tanC=a2+4bS2-c2.证明由余弦定理cosA=b2+2cb2c-a2及面积公式S=12bcsinA得:tanA=csionsAA=b22+bccsi2n-Aa2=b2+4c2S-a2.同理可证其它两式.这个公式刻画了三角形(非直角三角形)的三个角正切值与其面积、三边的关系.在解有关三角形正切问题中有着很广泛的应用.现举几例予以说明.例1(2005年天津卷理17题)在△ABC中,∠A、∠B、∠C所对的边长分别为a、b、c,设a、b、c满足条件b2+c2-bc=a2和bc=21+3,求∠A和tanB.解由余弦定理得:cosA=b2+2cb2c-a2=bc2bc=21.故∠A=3π.由正切公式得:tanB=a2+4cS2-b2=4×21bcsin3πa2+c2-b2=2c23-bcbc=2c3-bb=2.bc3-1=3...  相似文献   

20.
实系数一元二次方程 ax2 + bx+ c=0 ( a≠ 0 )的判别式 Δ=b2 - 4ac是中学数学中的基本内容 ,它在代数和几何中都有着广泛的应用 .下面让我们举些实例 ,说明判别式在解一类平面几何题中的应用 ,以供同行交流参考 .1 判别三角形形状例 1 设△ABC的三边为 a,b,c,并满足 b+ c=4 ,bc=a2 - 6 a+ 1 3,试问△ ABC是什么三角形 ?并证明你的结论 .解 由题意得 b,c是一元二次方程 x2 -4x+ ( a2 - 6 a+ 1 3) =0的两个实数根 ,∴Δ =4 2 - 4( a2 - 6 a+ 1 3)=- 4( a- 3) 2 ≥ 0 .∴ a=3,代入方程得 x2 - 4x+ 4 =0 .∴△ ABC为等腰三角形 .例 2 …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号